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Abstract. This paper presents the continuous adjoint method for computing the
sensitivity derivatives of integral functions used in incompressible aerodynamics; the for-
mulation includes the full differentiation of the Spalart-Allmaras turbulence model, based
on wall functions. The development of the continuous adjoint method for this turbulence
model with wall functions is presented for the first time; the only previous work on ad-
joint wall functions was presented by the same group for the k-ε model, [12]. Isolated
airfoil cases are initially studied, in order to assess the accuracy of the adjoint method
which differentiates the turbulence model equations and the law of the wall. Then, the
developed method is used to compute drag sensitivity maps of a passenger car.

1 Introduction

In aerodynamic shape optimization, discrete and continuous adjoint methods are in
widespread use for computing the derivatives of an objective function with respect to
(w.r.t.) the design variables; their advantages and disadvantages are discussed in [4, 6].

Regarding turbulent flows, the majority of published continuous adjoint methods rely
on the “frozen turbulence” assumption, i.e. all variations in turbulent quantities w.r.t. the
design variables are neglected. This is not, usually, the case in discrete adjoint where
the turbulence model equations are often differentiated, [1, 7]. In the continuous adjoint
method this paper is dealing with, there are just a few recent papers on the differentiation
of the turbulence model PDEs. The first paper on the continuous adjoint to turbulence
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models was [11], where the adjoint to the low-Reynolds number variant of the Spalart–
Allmaras turbulence model for incompressible flows was presented. Later on, this was
extended to compressible flows, [2]. In [12], the adjoint approach to the high-Re k − ε
turbulence model with wall functions was formulated by introducing the adjoint friction
velocity and the so-called adjoint wall functions. The theory and implementation of
[12] were based on an in-house, vertex-centered finite-volume code, using the pseudo-
compressibility method. There, the implementation of the primal wall functions was
based on a slip velocity condition, since the real solid wall was assumed to lie at a distance
underneath the grid boundary.

Here, the notion of the adjoint wall functions is expanded and applied to the high-Re
number Spalart–Allmaras model for incompressible flows. The cell-centered, pressure-
based implementation of the aforementioned model, as programmed in OpenFOAM c©, is
the basis of the adjoint formulation. A no-slip velocity condition is imposed on the wall
boundaries along with the law of the wall, expressed by a single formula governing both
the viscous sublayer and the logarithmic part of the boundary layer, [3].

The proposed method for computing adjoint-based sensitivities is validated against the
outcome of finite differences (FD) in flows around isolated airfoils. Then, the implemented
software is used to compute the drag sensitivity map over the surface of a passenger car.
In addition, a comparison is conducted between the sensitivity maps obtained by using
or avoiding the “frozen turbulence” assumption.

2 Flow Model

The flow model consists of the Navier–Stokes equations for incompressible fluids cou-
pled with the Spalart–Allmaras turbulence model, [9]. The primal PDEs are

Rp=−∂vj
∂xj

=0 (1a)

Rv
i =vj

∂vi
∂xj

− ∂

∂xj

[
(ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]
+

∂p

∂xi

=0 , i = 1, 2(, 3) (1b)

Rν̃ = vj
∂ν̃

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃

∂xj

]
− cb2

σ

(
∂ν̃

∂xj

)2

−ν̃ P (ν̃)+ν̃ D (ν̃)=0 (1c)

where p is the static pressure divided by the constant density, vi the velocity components,
ν the constant bulk viscosity, νt = ν̃fv1 the turbulent viscosity and ν̃ the turbulence

state variable. The production and dissipation terms are given by P (ν̃)= cb1Ỹ , D(ν̃)=

cw1fw(Ỹ ) ν̃
∆2 , where Ỹ =Yfv3+

ν̃
∆2κ2fv2 , Y =

∣∣∣eijk ∂vk
∂xj

∣∣∣. Y stands for the vorticity magnitude,

∆ is the distance of cell-centres from the nearest wall boundaries and eijk the Levi-

Civita symbol. The turbulence model functions are fv1 = χ3

χ3+c3v1
, fv2 = 1(

1+ χ
cv2

)3 , fv3 =

(1+χfv1)
cv2

[
3
(
1+ χ

cv2

)
+
(

χ
cv2

)2
](

1+ χ
cv2

)−3

, χ= ν̃
ν
, fw = g

(
1+c6w3

g6+c6w3

)1/6

, g= r+cw2(r
6−r), r=
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ν̃

Ỹ κ2∆2
. The model constants are cb1=0.1355, cb2=0.622, κ=0.41, σ=2/3, cw1=

cb1
κ2+

(1+cb2)
σ

,
cw2=0.3, cw3=2, cv1=7.1 and cv2=5. To implement the wall function technique, a special
treatment of vi and νt on the boundary faces (such as the bottom face in fig. 1) is required.
The wall function technique, as programmed in OpenFOAM c©, is based on a single formula
modeling both the viscous sublayer and the logarithmic region of the turbulent boundary
layer [3]

fWF =y+ − v+ − e−κB

[
eκv

+ − 1− κv+ − (κv+)2

2
− (κv+)3

6

]
= 0 (2)

where κ=0.41 and B=5.5. The non-dimensional distance and velocity at cell-centre P

are y+P = ∆P vτ
ν

, v+P = |vi|P
vτ

and the friction velocity is computed by

v2τ =−
[
(ν + νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]f
njt

I
i (3)

where nj and tIi are shown in fig. 1.
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Figure 1: Typical finite volume adjacent to the wall coinciding with the lower face, where n is the
outwards normal unit vector, tI is parallel to the velocity vector at the first cell centre P and tIIi =eijknjt

I
k.

The bottom face (symbol f) is the boundary face where the no-slip condition is applied.

Using the wall functions technique, vfi =0 (no-slip condition) and the viscous flux for
the i-th momentum equation at the wall boundary face f is given by

−
[
(ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)]f
nj ≈ −

[
(ν+νt)

∂vi
∂xj

]f
nj=−

(
ν+νf

t

) vfi − vPi
|Pf |

(4)

However, such a finite-difference quotient on a coarse mesh is inconsistent; so the normal
velocity gradient in eq. 4 is corrected by computing and using an “artificial” νf

t , so that
the wall shear stress satisfying eq. 2 and that computed by eq. 4, be equal. As a conse-
quence, in the flow equations, the wall function technique is implemented in the form of
fWF (vτ , |vi|P ,∆P )=0 (eq. 2 at each face f) which is solved for vτ and, then, eq. 3 adjusts
νf
t accordingly. Practically,

νf
t = − v2τ(

∂vi
∂xj

+
∂vj
∂xi

)f

njtIi

− ν ≈ −|Pf | v2τ

(vfi − vPi )t
I
i

− ν = |Pf | v2τ
vPi t

I
i

− ν (5)

which is, then, used to compute the contribution of the boundary viscous flux to the
momentum balance at the first cell adjacent to the wall, eq. 4.
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3 Objective Function and its Derivatives

An objective function F comprising only surface integrals can be expressed as

F =

∫
S

FS,inidS (6)

where S is the boundary of the computational domain Ω. Differentiating F w.r.t. the
design variables bn, n ∈ [1, N ], yields

δF

δbn
=

∫
S

δFSi

δbn
nidS+

∫
S

FSi

δni

δbn
dS+

∫
S

FSi
ni
δ(dS)

δbn
(7)

In eq. 7, δ(·)/δbn denotes the total derivative w.r.t. the design variables. We also define the
partial derivative ∂(·)/∂bn as the variation caused purely by variations in the flow variables
(in turn, caused by geometry deformations) without considering space deformations. Any
small surface deformation can be seen as a normal perturbation, [5], and the total and
partial derivatives of an arbitrary variable Φ w.r.t. bn written along S are linked through

δsΦ

δbn
=

∂Φ

∂bn
+

∂Φ

∂xk

nk
δxm

δbn
nm (8)

By taking into consideration eq. 8 with FSi
instead of Φ and applying the chain rule, eq. 7

can be written as

δF
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ni
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dS+
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∂bn
dS+

∫
S

∂FSi

∂ν̃
ni

∂ν̃

∂bn
dS+

∫
S

∂FSi

∂τkj
ni
∂τkj
∂bn

dS

+

∫
SWp

ni
∂FSi

∂xm

nm
δxk

δbn
nkdS+

∫
SWp

FSi

δni

δbn
dS+

∫
SWp

FSi
ni
δ(dS)

δbn
(9)

where τkj =(ν + νt)
(

∂vk
∂xj

+
∂vj
∂xk

)
. The boundary S is written as S=SI ∪ SO ∪ SW ∪ SWp

with SI , SO, SW and SWp standing for the inlet, outlet, fixed and parameterized wall
boundaries of Ω, respectively. Since only SWp is allowed to vary, quantities related to
geometry variations are defined only along SWp . Eq. 7 includes ∂FS,i/∂ν̃, taking into
consideration a possible direct dependence of F on the turbulence model variable. Such
a dependence would be ignored if the “frozen turbulence” assumption was made.

4 Development of the Continuous Adjoint Method

Starting point for the derivation of the adjoint equations is the augmented objective
function, defined by adding the volume integrals of the primal equations, multiplied by
the corresponding adjoint variable fields, to F , as follows

Faug=F+

∫
Ω

uiR
v
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aR
ν̃dΩ (10)
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where ui are the adjoint velocity components, q the adjoint pressure and ν̃a the adjoint
to ν̃. The latter is omitted in the “frozen turbulence” assumption.

By differentiating eq. 10 w.r.t. bn and employing the Leibniz theorem for integrals with
variable boundaries, we get

δFaug

δbn
=

δF

δbn
+

∫
Ω

ui
∂Rv

i

∂bn
dΩ+

∫
Ω

q
∂Rp

∂bn
dΩ+

∫
Ω

ν̃a
∂Rν̃

∂bn
dΩ+

∫
SWp

(
uiR

v
i +qRp+ν̃aR

ν̃
)
nk

δxk

δbn
dS

(11)

The development of the partial derivatives of the mean flow and turbulence model equa-
tions is presented in detail in [11], there for the low-Re number variant of the Spalart–
Allmaras model. Since this lengthy development is identical in both variants of the model,
it will not be repeated herein.

4.1 Field Adjoint Equations

After taking into consideration the development presented in [11] and the general ex-
pression for δF/δbn, eq. 9, the following form of δFaug/δbn is obtained

δFaug

δbn
=

∫
S

BCu
i

∂vi
∂bn

dS+

∫
S

(ujnj+
∂FSi

∂p
ni)

∂p

∂bn
dS+

∫
S
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∂bn
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+

∫
S
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nk)

∂τij
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∫
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σ

)
∂

∂bn

(
∂ν̃
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)
njdS

+

∫
Ω

Ru
i

∂vi
∂bn

dΩ+

∫
Ω

Rq ∂p

∂bn
dΩ+

∫
Ω

Rν̃a
∂ν̃

∂bn
dΩ+

∫
Ω

ν̃ν̃aC∆
∂∆

∂bn
dΩ

+

∫
SWp

ni

∂FSWp,i

∂xm
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δxk

δbn
nkdS+

∫
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FSWp,i

δ(nidS)

δbn
+

∫
SWp

(uiR
v
i + qRp + ν̃aR

ν̃)
δxk

δbn
nkdS (12)

where

BCu
i =uivjnj+(ν + νt)

(
∂ui

∂xj

+
∂uj

∂xi

)
nj−qni+ν̃aν̃

CY
Y

emjk
∂vk
∂xj

emlinl+
∂FSk

∂vi
nk (13)

BC ν̃a = ν̃avjnj+

(
ν+

ν̃

σ

)
∂ν̃a
∂xj

nj−
ν̃a
σ

(1 + 2cb2)
∂ν̃

∂xj

nj+
∂FSk

∂ν̃
nk (14)

Zeroing the multipliers of ∂vi/∂bn, ∂p/∂bn and ∂ν̃/∂bn in the volume integrals of eq. 12
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leads to the field adjoint equations, namely

Rq=−∂uj

∂xj

=0 (15a)

Ru
i =uj

∂vj
∂xi

− ∂(vjui)

∂xj

− ∂

∂xj

[
(ν+νt)

(
∂ui

∂xj

+
∂uj

∂xi

)]
+

∂q

∂xi

+ν̃a
∂ν̃

∂xi

− ∂

∂xl

(
ν̃aν̃

CY
Y

emjk
∂vk
∂xj

emli

)
=0 , i=1, 2(, 3) (15b)

Rν̃a =−∂(vj ν̃a)

∂xj

− ∂

∂xj

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

]
+
1

σ

∂ν̃a
∂xj

∂ν̃

∂xj

+ 2
cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ ν̃aν̃Cν̃

+
∂νt
∂ν̃

∂ui

∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+ (−P+D) ν̃a=0 (15c)

Eq. 15a is the adjoint continuity equation. The last two terms in the adjoint momentum
equations, eqs. 15b, result from the differentiation of the turbulence model equation.
This term depends on the adjoint turbulence variable ν̃a, i.e. the solution of the adjoint
turbulence model PDE, eq. 15c.

The last integral in eq. 12, containing the distance variation w.r.t. the design variables,
is considered to be negligible compared to the rest of the terms comprising eq. 12. The
adjoint boundary conditions are formulated by appropriately treating the surface integrals
in eq. 12, containing variations in the flow variables.

4.2 Adjoint Boundary Conditions – Adjoint Wall Functions

At SI and SO, the adjoint boundary conditions coincide with those presented in [11].
Since the distinguishing feature of the present paper is the use of wall functions, only the
adjoint wall boundary conditions are presented.

Since SW is fixed, the partial and total derivatives of any flow quantity are identical
and the total derivatives of the normal and tangent unit vectors are zero. Due to the
Dirichlet condition imposed on ν̃, the third integral on the r.h.s. of eq. 12, written along

SW vanishes automatically. To make eq. 12 independent of ∂
∂bn

(
∂ν̃
∂xj

)
nj, a zero Dirichlet

condition is imposed on ν̃a. To eliminate the dependency of δFaug/δbn on ∂p/∂bn, the

normal adjoint velocity must be equal to u〈n〉=−
∂FSW,i

∂p
ni. By further developing the first

and fourth integrals on the r.h.s. of eq. 12, a Dirichlet condition for uII
〈t〉 results, along

with the following expression

u2
τ =(ν+νt)

(
∂ui

∂xj

+
∂uj

∂xi

)
njt

I
i =0 (16)

which stands for the adjoint friction velocity. Its role is similar to that of the primal
friction velocity, i.e. is used to calculate the adjoint viscous flux in order to complete the
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adjoint momentum equilibrium at the first cell adjacent to SW , fig. 1. The adjoint friction
velocity is an indispensable part of the adjoint system of equations to the high-Re Spalart–
Allmaras model since, due to the “long distance” between f and P , fig. 1, differentiating
normal to the wall is prone to important errors. The implications of neglecting the adjoint
law of the wall are discussed in section 5.

Since the primal boundary conditions for the SW and SWp boundaries are identical, the
adjoint boundary conditions for SWp are the same as those imposed along the SW bound-
aries. The only difference is that since SWp may vary, the total and partial derivatives of
the flow quantities are different and linked through eq. 8. In addition, the total variations
in the normal and tangent surface vectors are not zero, contributing thus extra terms to
the sensitivity derivatives.

4.3 Sensitivity Derivatives

After satisfying the field adjoint equations and their boundary conditions, the remain-
ing terms on the r.h.s. of eq. 12 comprise the sensitivity derivatives expression, which
reads

δFaug

δbn
=TWF

SD −
∫
SWp

SD1
∂τij
∂xm

njt
I
inmnk

δxk

δbn
dS−

∫
SWp

SD1τij
δ(njt

I
i )

δbn
dS+

∫
SWp

SD2,iv
I
〈t〉

δtIi
δbn

dS

−
∫
SWp

SD2,i
∂vi
∂xm

nmnk
δxk

δbn
dS−

∫
SWp

[(
ν+

ν̃

σ

)
∂ν̃a
∂xj

nj+
∂FSz

∂ν̃
nz

]
∂ν̃

∂xm

nmnk
δxk

δbn
dS

+TD+

∫
SWp

(uiR
v
i + qRp + ν̃aR

ν̃)
δxk

δbn
nkdS (17)

where SD1=−uI
〈t〉+φ〈tI〉〈n〉+φ〈n〉〈tI〉 , SD2,i=(ν+νt)

(
∂ui

∂xj
+

∂uj

∂xi

)
nj−qni+

∂FSWp,k

∂vi
nk and

φij=
∂FSWp,k

∂τij
nk. In eq. 17, TWF

SD results from the differentiation of the law of the wall. TD

is a lengthy expression including variations in geometrical quantities.

5 Validation – Applications

The objective function, to be minimized, is the force exerted on the surface of the
aerodynamic body, projected on a predefined direction, r. This is written as

F =

∫
SWp

[
−(ν+νt)

(
∂vi
∂xj

+
∂vj
∂xi

)
+pδji

]
njridS (18)

5.1 Validation in 2D airfoil cases

In the first one, a symmetric NACA0012 airfoil is parameterized using Bézier–Bernstein
polynomials with 12 control points for each of its pressure and suction sides, fig. 2. A
hybrid grid with ≈ 200000 cells was generated with a mean non-dimensional distance of
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the first cell adjacent to the wall equal to y+≈10. The flow Reynolds number is Re=6×
106 based on the airfoil chord length and the infinite flow angle is α∞=3o. The proposed
method for computing sensitivity derivatives using the adjoint wall functions technique
is used to obtain the sensitivities of the drag force (eq. 18 with r=[cos(α∞), sin(α∞)]T )
exerted on the airfoil w.r.t. the (x, y) coordinates of the 24 control points, resulting to
a total of 48 design variables. The outcome of this computation is compared with the
result of FD and other alternatives based on the adjoint approach in fig. 3. A detailed
description and comments on the performed comparison can be found in the caption of
fig. 3.
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Figure 2: NACA0012, α∞=3o: Airfoil contour and Bézier control points, not in scale, (left) along with
a blow-up view of the mesh near the leading edge (right).

In the second case, a NACA4415 airfoil is parameterized using Bézier–Bernstein poly-
nomials with 8 control points on each side, fig. 4. A hybrid grid of about 200000 cells is
used with a mean y+ ≈10. The Reynolds number and infinite flow angle are Re=6× 106

and α∞ = 10o, respectively, resulting to mild flow separation close to the trailing edge.
For this case as well, the validation of drag sensitivity derivatives is conducted by com-
paring the outcome of the adjoint wall functions method with FD, fig. 5-left. Even in
the presence of mild flow separation, the two methods produce results which are in very
good agreement. In fig. 5–right, the same curves are compared with other adjoint-based
approaches, reconfirming the observations made in the first case.

5.2 Drag Sensitivity Maps on the Volkswagen Polo car

In this section, the developed software is used to compute the sensitivity derivatives of
the drag objective function w.r.t. the normal displacement on the boundary wall nodes
of the Volkswagen Polo car (drag sensitivity map). The computational mesh consists of
approximately 8 million cells and has an average y+ value of ≈ 50. The primal flow fields
used for the solution of the adjoint equations are obtained by time-averaging the solution
of the Navier-Stokes equations, coupled with the DES Spalart–Allmaras model, [10], with
wall functions. The time-averaged primal velocity is, then, fed to the RANS-version of
the Spalart–Allmaras turbulence model in order to solve for the turbulent viscosity νt.
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Figure 3: NACA0012, α∞=3o: Left: Drag sensitivities computed using the proposed method (marked
as “adjoint WF”) are compared to the outcome of FD. The first 24 points correspond to the derivatives
w.r.t. the x coordinates of the suction and pressure side control points while the last 24 to those w.r.t. the y
coordinates. The two curves are in excellent agreement. Right: The afore-mentioned curves are compared
with those resulting from the adjoint method using the “frozen turbulence” assumption and the adjoint
method with the “low–Reynolds” approach (different scale on the vertical axis). The latter implies that
the turbulence model is differentiated but the differentiation of the wall functions is disregarded (in other
words, the primal solver is the high–Re variation of the Spalart–Allmaras model but the adjoint is based on
the low–Re variant of the same model; no adjoint wall functions are used). The gain in accuracy through
the use of the adjoint wall functions is obvious. In this case, the “low–Re” approach performs even worse
than the adjoint method with the “frozen turbulence” assumption, i.e. the incomplete differentiation of
the turbulence model produces worse results than the complete omission of its differentiation.
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Figure 4: NACA4415 airfoil, α∞ = 10o: Left: airfoil contour and Bézier–Bernstein control points
parameterizing its shape (not in scale). Right: velocity isolines and streamtraces in the vicinity of the
trailing edge.

With these fields – time-averaged primal velocity and pressure as well as the RANS-νt
– the steady-state adjoint equations, presented in sections 4.1 and 4.2, are subsequently
solved to obtain the sensitivity derivatives. This procedure has already been used in
the past to generate drag sensitivity maps for entire car shapes [8], using however the
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Figure 5: NACA4415 airfoil, α∞=10o: Left: Drag sensitivities computed using the proposed method,
compared with FD, notation as in fig. 3. For this case, too, the results of the proposed method match
those of FD. Right: The comparison with the adjoint method using the “frozen turbulence” assumption
and the “low–Reynolds” approach confirms the observations made in the first case.

“frozen turbulence” assumption. It is now the first time that such sensitivity maps are
computed with full differentiation of the turbulence model including adjoint wall functions.
Fig. 6 compares sensitivities computed utilizing the two approaches. It can be observed
that while the full differentiation of the turbulence model and the “frozen turbulence”
assumption compute the same sensitivity sign for almost the entire surface of the car,
the latter tends to overestimate the sensitivity magnitude by more than one order of
magnitude. In other words, qualitatively, both approaches convey similar messages: the
necessity of a rear spoiler for further drag reduction, the beneficial effect of an earlier
separation at the rear sides of the car, and of a less pronounced styling of the front wing.
For quantitative assessments, i.e. how much drag reduction can be achieved for a given
deformation of the car shape, which is a crucial question within the aerodynamic car
design process, the sensitivity map based on the “frozen turbulence” assumption proves
to be unreliable and the usage of adjoint wall function is a must.

6 Summary–Conclusions

In this paper, the mathematical development of the adjoint wall functions technique,
formulated for the one-equation Spalart–Allmaras turbulence model was analyzed. The
so-computed drag sensitivity derivatives were validated in two airfoil flow problems and are
shown to be in very good agreement with finite-differences. Finally, the developed adjoint
software was used to compute the drag sensitivity maps on the surface of a passenger
car (with a DES primal solver, followed by averaging) and the computed sensitivities
were compared with those obtained by using the “frozen turbulence” assumption. It was
observed that the sensitivity sign computed by the two methods was the same for the
largest part of the car shape, though the “frozen turbulence”-based sensitivities were at
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least one order of magnitude higher than those computed by the proposed method.
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Figure 6: Volkswagen Polo, drag sensitivity map: Sensitivity maps plotted over the surface of the car,
as seen from different viewpoints. Red–coloured areas suggest an inward displacement (direction from
the fluid to the solid) in order to minimize the objective function, while blue–coloured areas suggest
an outward displacement. White isolines indicate sensitivity sign changes (zero sensitivity isolines).
Left: sensitivities computed using the proposed method (full differentiation of the turbulence model and
utilization of adjoint wall functions). Right: sensitivities based on the “frozen turbulence” assumption.
It should be noted that sensitivities based on the ‘frozen turbulence” assumption are overestimated by
more than an order of magnitude (different colour scale between figures on the left and right).
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