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ABSTRACT: Adjoint optimization is an exciting and fast growing field that has many applications in the automotive industry. We 

focus on the usage of adjoint for the optimization of aerodynamic performance. While adjoint methods have come to the attention of 

mainstream CFD through inclusion in prominent commercial codes, most of the available tools are severely limited, precluding 

productive use in this field. We detail a methodology that is based on the continuous adjoint method and is implemented in an Open 

Source framework. While more mathematically demanding in terms of its derivation, the continuous adjoint method requires orders of 

magnitude fewer resources without sacrificing significant accuracy. In this paper continuous adjoint methods are used for calculating 

gradients of aerodynamic objective functions (drag, lift, moments etc.) in applications with a huge number of design variables. 

Methodologies that accept either steady-state RANS (1)(2)(3) or time averaged DES (4) as primal flow input are outlined and extensions to 

improve the accuracy of previously published methods are detailed. Finally a novel methodology, based on volumetric B-splines to 

translate the surface sensitivities produced by the adjoint into optimized shapes, is introduced and showcased. 
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1. INTRODUCTION 

Computational Fluid Dynamics (CFD) is central to large 

portions of automotive design. Not only is it used prominently 

for the prediction of external aerodynamic performance, but it 

also sees extensive use in a diverse set of applications including 

(but not limited too) HVAC (heating ventilation and cooling), 

combustion, exhausts, after treatment, air intakes, thermal 

management, head-lights, air bags, aero-acoustics, fuel supply, 

and the design of pumps/fans/blowers.  

Much of the design process attached to these components 

and systems is still dependent on manual iterations between 

designer and computational analysts. Even in instances where 

automated stochastic optimization loops are in place, these are 

severely constricted by the fact that the costs are proportional to 

the number of parameters to be optimized. This places a limit on 

the degrees of freedom available to the optimization process and 

constrains the degree of optimization that can be achieved within 

the allowable parameter space. Further, the conceptually simple 

step of parameterizing the input CAD necessary for such a 

process can be a stumbling block in and of itself, especially 

considering the complexity of many of the components. 

One of the fastest growing fields in CFD research is adjoint 

optimization. It is based on the Adjoint method, which allows for 

very efficient calculation of sensitivities of the objective function 

with respect to design variables. In fact, the computational effort 

in typical adjoint systems is dependent only on the number of 

objectives (drag, lift, etc.) rather than the number of design 

variables (surface node displacement). This makes adjoint 

methods ideal for optimizing problems with large numbers of 

variables and/or large design spaces. 

In the context of the adjoint method, there are two main 

variants: discrete adjoint and continuous adjoint. In the discrete 

approach, the discretization of the partial differential equations 

happens before the adjoint differentiation. This can be done 

manually or via algorithmic differentiation tools such a 

TAPENADE(9). In the continuous approach, the adjoint 

equations are formulated by differentiating the partial differential 

equations representing the flow (primal problem) directly. These 

“adjoint equations” are then discretized and solved. The two 
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approaches perform similarly when applied to simple canonical 

test cases: the calculation of the sensitivity derivatives is fast, the 

procedure converges rapidly and the whole process is relatively 

straight-forward. However, in industrial scale applications the 

solution of the adjoint problem becomes significantly more 

challenging.  

The discrete adjoint can theoretically provide the “exact” 

gradient w.r.t. the design variables for any objective specified, 

but it requires large amount of memory and computational cost. 

More precisely, all the intermediate states during the discrete 

calculation have to be stored in the memory. In discrete 

terminology these intermediate states are referred to as the “tape”. 

Techniques such as revolve (check-pointing) have been 

developed to reduce the memory requirements, but this 

significantly increases the computational cost of the method. The 

net effect is that the cost of discrete adjoint will typically be an 

order of magnitude or more in excess of the primal solution, and 

can often place unmanageable burdens on the compute 

infrastructure in terms of memory requirements. 

In the continuous adjoint method on the other hand, the 

bottle-neck lies in the analytical differentiation of the primal 

flow equations, which can be complicated and time-consuming. 

This amount of effort will depend on the complexity of the 

primal equation system, but the full derivation only has to be 

performed once for each unique equation set. The memory 

requirements and computational cost is however similar to the 

solution of the primal equations. This makes the continuous 

approach ideal for industrial scale applications with intermediate 

to large computational meshes. Further, the derivation process 

that produces the continuous adjoint equations and the familiarity 

of the resulting equations and algorithms promotes a deeper 

understanding of the solution system. This in turn can be of 

significant benefit in the development of efficient adjoint solvers, 

as will be shown in this publication. 

  

2. METHODOLOGY 

2.1. Continuous Adjoint 

In this paper, we demonstrate the use of the continuous 

adjoint method for efficient shape optimization of vehicle 

external aerodynamic problems. While transient adjoint 

formulations are possible, they are much more complex and 

costly to implement and maintain. We thus initially restrict 

ourselves to steady state: the primal flow RANS (Reynolds-

Averaged-Navier-Stokes) equations are: 

  

𝑅𝑝 =
𝜕𝑣𝑖

𝜕𝑥𝑖

= 0 

𝑅𝑖
𝑣 = 𝑣𝑗

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑝

𝜕𝑥𝑗
−

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑡) (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)] = 0 

𝑅𝑖
𝑧 = Convection + Diffusion + Production

+ Disipation = 0 

( 1 ) 

( 2 ) 

( 3 ) 

 Where 𝑣𝑖  is the primal velocity, p is the primal pressure,  

and t are the kinematic and turbulent kinematic viscosity, 

respectively. 𝑅𝑖
𝑧  is considered to be an arbitrary turbulence 

model with zi representing the multicomponent turbulence vector.  

Now in order to derive the adjoint, let us start by defining an 

objective function F. The objective can be defined as a 

combination of surface and volume integrals.  

𝐹 = ∫ 𝐹𝑠
𝑆

𝑑𝑆 + ∫ 𝐹Ω
Ω

𝑑Ω ( 4 ) 

F is then augmented (extended) by the state equations, 𝑅𝑝 

and 𝑅𝑖
𝑣.  

𝐹𝑎𝑢𝑔 = 𝐹 + ∫ 𝑞𝑅𝑝

Ω

𝑑Ω + ∫ 𝑢𝑖
Ω

𝑅𝑖
𝑣𝑑Ω ( 5 ) 

Here q and 𝑢𝑖 are the adjoint variables and due to the way 

they enter the solution algorithm can be interpreted as “adjoint 

pressure” and “adjoint velocity” respectively. In this example 

derivation the turbulent kinematic viscosity ( 𝜈𝑡 ) is assumed 

constant with respect to changes in the design variables (frozen 

turbulence assumption). This assumption can have an effect on 

sensitivity, but in many instances the reduced complexity that 

results makes the assumption justifiable. The morphing cases in 

section 3, however include the adjoint to the turbulence model 

equations.  

Differentiating the augmented cost function, Faug, (see 
(1)

 for 

details) produces the adjoint equations for incompressible flow 

with frozen turbulence: 

𝑅Ω
𝑞

=
𝜕𝑢𝑖

𝜕𝑥𝑖

−
𝜕𝐹

𝜕𝑝
= 0 

𝑅𝑖 Ω
𝑢 = 𝑣𝑗

𝜕𝑢𝑖

𝜕𝑥𝑗
+ 𝑢𝑗

𝜕𝑣𝑗

𝜕𝑥𝑖
+

𝜕𝑞

𝜕𝑥𝑗
                                 

−
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑡) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
)] +

𝜕𝐹

𝜕𝑣𝑖
= 0 

( 6 ) 

 

( 7 ) 

The adjoint equations are very similar to the primal 

equations (eqs. (1-3)). They both have convection, diffusion, a 



gradient of pressure and (possibly) a source term. The main 

difference is the additional term ( 𝑢𝑗
𝜕𝑣𝑗

𝜕𝑥𝑖
 ), which appears in the 

 adjoint momentum equations. This term is referred to as the 

Adjoint Transpose Convection (ATC). 

After solving the adjoint equations, the surface sensitivities 

of the objective function with respect to the surface normal 

motion of the surface nodes (design variables) can be calculated 

with the following expression: 

𝛿𝐹𝑎𝑢𝑔

𝛿𝑏
= ∫ [(𝜈 + 𝜈𝑡) (

𝜕𝑢𝑖

𝜕𝑥𝑗
+

𝜕𝑢𝑗

𝜕𝑥𝑖
) − 𝑞𝑛𝑖]

𝑆𝑤

𝜕𝑣𝑗

𝜕𝑥𝑘

𝜕𝑥𝑘

𝜕𝑏𝑚
𝑑𝑆 ( 8 ) 

In shape optimization problems, the surface sensitivities are 

used as an input to a deformation tool, which morphs the 

computational domain. This process is typically iterative and 

there are many different methods that can be used to achieve the 

shape modification. These range from two-way coupling of the 

adjoint problem to parameterized CAD to direct free form 

deformation of the surface nodes.  

 

2.2. Verification 

In order to verify the basic methodology, we apply a naïve 

morphing operator to a previously published model vehicle – the 

DrivAer Estate
 (5)

. The objective function in this case is drag 

minimization and the primal is a steady state RANS using the 

Spalart-Allmaras turbulence model.  

 

 

Fig. 1: DrivAer Estate showing the original model with 

adjoint surface sensitivities (blue = push in to reduce drag and 

red = pull out) and the morphed geometry. Wheels are omitted 

for clarity. 

 

We apply a simple hyperbolic tangent filter to the adjoint 

surface sensitivities that limits the maximum single-step 

displacement to 2mm. Figure 1 displays the surface sensitivities 

generated for the case along with the result of the morphing 

operation. The morphed geometry was re-meshed and drag 

coefficient was found to reduce from CD = 0.356 to 0.328 (~8%). 

The difference between the two geometries is minimal and 

difficult to identify from the image. In this context, the large 

improvement achieved in the objective with such a small 

modification is all the more surprising. Unfortunately, morphing 

without constraints will not in general result in a manufacturable 

design, which means this approach has limited utility as an actual 

design tool. It does however showcase the effectiveness of the 

adjoint method in the context of a realistic vehicle geometry. 

Further and more rigorous validation of the method can be found 

in 
(1) (2)

. 

 

2.3. Linearized ATC 

The ATC term identified in sec. 2.1 is the main source of 

difficulty when attempting to solve the continuous adjoint 

equations with traditional segregated algorithms such as 

SIMPLE (Semi-Implicit Method for Pressure Linked Equations). 

The ATC cross couples the components of the adjoint velocity, 

which means it cannot be implemented implicitly in a segregated 

algorithm. The contribution thus has to be lagged, making it fully 

explicit. This results in weak coupling between the adjoint 

pressure and velocity, which in combination with imperfect cell 

quality or high surface normal gradients can lead to gradual self-

reinforcing divergence of the solution. 

In aerodynamic calculation, these conditions typically occur 

near the wall. The general practice in such cases is to limit the 

contribution of the ATC in the near-wall cells and to employ first 

order convection for the implicit part of the adjoint convection. 

The additional numerical dissipation introduced by the use of the 

upwind scheme and the excision of the strong source regions is 

typically enough to stabilize the calculation. The obvious 

drawback however is that the upwind scheme is less accurate 

than the second order schemes typically used for RANS primal 

calculations and secondly that by masking the near-wall 

contributions to the ATC, we are removing some of the largest 

source terms from the equation. A method that preserves second 

order accuracy while maintaining stability is thus highly 

desirable. 

The obvious long term solution is to implement the primal 

and adjoint equations in a block coupled framework that allows 



implicit implementation of the full equation set. In the current 

context an approximate approach based on the selective masking 

of instability inducing flow regions has been developed. A linear 

surrogate model is constructed for the ATC contribution to the 

matrix. The main purpose of this model is to identify the cells in 

which the ATC would give negative contributions in the 

diagonal of the matrix (left hand side) if it was implicit. 

𝐴𝑇𝐶𝑖 = 𝑢𝑗

𝜕𝑣𝑗

𝜕𝑥𝑖
 

𝐴 = 𝐴𝑇𝐶𝑖

𝑢𝑖

𝑢2 

( 9 ) 

( 10 ) 

A is the projected diagonal contribution for an implicit ATC 

term. If A is negative, the ATC will reduce the matrix’ diagonal 

dominance and make the solution more unstable. As a result, the 

system will become ill-posed and potentially diverge. Using this 

indicator, the ATC contribution can be damped on a cell-by-cell 

basis so that diagonal dominance of the matrix, and by inference 

stability, is guaranteed. This approach results in a minimal 

reduction in the ATC source term and allows the use of second 

order schemes for the adjoint convection term. Without this 

targeted damping a strong much more global damping of the 

ATC is required to ensure stable second order operation. 

Figure 2 shows a comparison of drag minimization surface 

sensitivities for second order convection with linearized ATC 

and first order convection with global near-wall damping for the 

DrivAer Sedan model(5). There are clear qualitative and 

quantitative differences. The second order method produces 

smoother fields with much more detailed small features. The 

overall trends are similar (as expected), but there are clear 

regional differences in the rear spoiler and front bonnet regions, 

which implies the use of near-wall ATC damping plus first order 

upwind for the adjoint convection can lead to suboptimal designs. 

 

Fig. 2: Comparison of surface drag sensitivities for second 

order LUD plus adaptive linearised ATC (top) and first order UD 

with fixed near-al blending (bottom). DrivAer sedan model (5). 

 

2.4. Time Averaged DES Adjoint 

The steady state RANS adjoint approach has shown very 

positive results over a large range of applications 
(1)(4)(7)

. The 

method however suffers from a shortcoming that is inherent to 

the underlying primal RANS equations in that many problems 

are not accurately described by this approach. Thus, any method 

that relies on RANS to generate sensitivities (adjoint or 

stochastic) will suffer from the same inaccuracies. 

The DES (Detached Eddy Simulation) method is an 

approach that directly resolves most of the important scales of 

motion rather than approximating these scales with a turbulence 

model. Due to the reduced modelling dependence, it can be much 

more accurate and consistently accurate than any RANS based 

method 
(10)

. The method is however inherently transient and as 

mentioned previously, transient adjoint is much more costly and 

cumbersome to evaluate than the steady equivalent. If we are 

however, only interested in the time averaged aerodynamic 

properties of the vehicle, i.e. the mean drag, then an interesting 

possibility presents itself: to formulate a steady adjoint for the 

time averaged transient primal flow. 

To derive such an adjoint let us start from the basic 

LES/DES equations for an incompressible flow. In what follows, 

we neglect the continuity equation, since it’s time averaged form 

is identical to its instantaneous form. The turbulence quantities 

are assumed frozen to simplify the derivation (this might not be 

the case for actual simulations). The focus is then on the standard 

LES/DES momentum equation: 

𝜕𝑣𝑖

𝜕𝑡
+

𝜕𝑣𝑖  𝑣𝑗

𝜕𝑥𝑗
+

𝜕𝑝

𝜕𝑥𝑗
 

−
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑆𝐺𝑆) (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)] = 0 

( 11 ) 

The over-bar denotes a spatial filtering operation and 𝜈𝑆𝐺𝑆 

represents the sub-grid scale turbulence viscosity, which is 

typically much smaller than a RANS based turbulence viscosity. 

In order to recover a steady flow field, we apply a time averaging 

operator to eq. (15) denoted by the claret (^). The time averaged 

DES equation results: 

𝜕𝑣𝑖

𝜕𝑡

̂
+

𝜕𝑣𝑖 𝑣𝑗

𝜕𝑥𝑗

̂
+

𝜕𝑝

𝜕𝑥𝑗

̂
 

−
𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑆𝐺𝑆) (

𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)]

̂
= 0 

( 12 ) 

 



Assuming the difference operators are constant in time, the 

flow is statistically steady and the averaging is long enough, 

several simplifications can be made: 

𝜕𝑣𝑖

𝜕𝑡

̂
→ 0, 

𝜕𝑝

𝜕𝑥𝑗

̂
=

𝜕𝑝̂ 

𝜕𝑥𝑗
 ( 13 ) 

𝜕𝑣𝑖 𝑣𝑗

𝜕𝑥𝑗

̂
=

𝜕𝑣𝑖
̂  𝑣𝑗

̂

𝜕𝑥𝑗
−

𝜕𝑇𝑖𝑗

𝜕𝑥𝑗
 ( 14 ) 

𝑇𝑖𝑗 = 𝑣𝑖𝑣𝑗
̂ − 𝑣𝑖

̂  𝑣𝑗
̂  ( 15 ) 

For the viscous term we assume that: 

𝜈𝑆𝐺𝑆 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)

̂
≈ 𝜈𝑆𝐺𝑆̂ (

𝜕𝑣𝑖
̂

𝜕𝑥𝑗
+

𝜕𝑣𝑗
̂

𝜕𝑥𝑖
) ( 16 ) 

and collect the different into the resolved Reynolds stress 

tensor 𝑇𝑖𝑗 . Substituting eqs. (13-16) back into (12), the time 

averaged DES momentum equation becomes: 

𝑅𝑖
𝑣̂ =

𝜕𝑣𝑖
̂  𝑣𝑗

̂

𝜕𝑥𝑗
−

𝜕𝑝

𝜕𝑥𝑗

̂
− 

𝜕

𝜕𝑥𝑗
[(𝜈 + 𝜈𝑆𝐺𝑆̂ ) (

𝜕𝑣𝑖
̂

𝜕𝑥𝑗
+

𝜕𝑣𝑗
̂

𝜕𝑥𝑖
) + 𝛵𝑖𝑗] = 0 

( 17 ) 

All the time averaged quantities, 𝑣𝑖
̂ , 𝑝̂, 𝜈𝑆𝐺𝑆̂  and 𝛵𝑖𝑗  can be 

calculated during the primal run. The averaged resolved 

Reynolds stress 𝛵𝑖𝑗 is not however differentiable, so in order to 

include its effect in the adjoint, we need to define a more implicit 

approximation. Taking a cue from RANS and as a first 

approximation, we formulate the stress as the product of the 

strain with some “turbulent” viscosity, 𝜈𝑡, plus a residual stress. 

𝜈𝑆𝐺𝑆 (
𝜕𝑣𝑖

𝜕𝑥𝑗
+

𝜕𝑣𝑗

𝜕𝑥𝑖
)

̂
+ 𝛵𝑖𝑗 = 𝜈𝑡 (

𝜕𝑣𝑖
̂

𝜕𝑥𝑗
+

𝜕𝑣𝑗
̂

𝜕𝑥𝑖
) + 𝑄𝑖𝑗 ( 18 ) 

Where 𝑄𝑖𝑗, is the uncorrelated residual stress assumed to be 

independent of the mean flow and design variables (frozen 

assumption). There is a degree of freedom in choosing 𝜈𝑡 as any 

residual will simply be absorbed into𝑄𝑖𝑗. However, choosing a 

model that minimizes 𝑄𝑖𝑗  in the context of the formalism will 

lead to a more implicit and therefore accurate adjoint. 

The easiest approach is to find 𝜈𝑡  by simply solving a 

standard RANS model with the time averaged primal velocity 𝑣𝑖
̂ , 

as input. The adjoint equations for the time averaged DES primal 

are identical to those for the steady RANS primal, other than that 

time averaged inputs are used. 

Figure (3) shows a comparison between the surface 

sensitivities on an Audi A7 of a RANS steady state adjoint and a 

time averaged DES adjoint using the Spalart-Allmaras model to 

calculate the turbulent viscosity. Note the similarity between 

RANS- and DES-based drag sensitivities for the largest part of 

the car roof and the dramatic difference at the rear part. While 

the RANS computation misses the favorable effect of a rear 

spoiler, it is clearly present in the DES results. Tests with a 

variable spoiler on the actual vehicle have corroborated the DES 

sensitivity result. 

 

 

Fig. 3: RANS vs. approximate DES sensitivities for Audi A7. 

The actual shape of the active spoiler in the current Audi A7 is 

shown in the bottom of the image. 

 

2.4.1. Tensorial Viscosity 

   Using a scalar viscosity calculated via a RANS turbulence 

model might be straight forward, but it completely neglects the 

availability of the time averaged resolved Reynolds stress (𝑇𝑖𝑗). 

In order to reduce the magnitude of the residual stress , 𝑄𝑖𝑗,. we 

can instead derive a tensorial viscosity. Choosing a tensor 

coefficient provides more degrees of freedom when trying to 

approximate 𝑇𝑖𝑗 , since we do not have to assume isotropy nor 

alignment of the stress and strain rate. The proposed method uses 



the same relation as eq. (18) but instead of a scalar viscosity (𝜈𝑡) 

we calculate a tensorial viscosity (N) from the averaged strain 

( 𝑆̂𝑖𝑗 ), averaged SGS stresses ( 𝐵̂𝑖𝑗 ) and averaged resolved 

Reynolds stresses (𝑇𝑖𝑗 ). The necessary averaged quantities are 

calculated with the following formulas: 

𝐵̂𝑖𝑗
𝑛+1

= 𝑎𝐵̂𝑖𝑗
𝑛

+ (1 − 𝑎)𝐵𝑖𝑗 ( 19 ) 

𝑆̂𝑖𝑗
𝑛+1

= 𝑎𝑆̂𝑖𝑗
𝑛

+ (1 − 𝑎)𝑆𝑖𝑗 

𝑇𝑖𝑗
𝑛+1 = 𝑎(𝑇𝑖𝑗

𝑛 + 𝑣̅𝑖
𝑛𝑣̅𝑗

𝑛) + (1 − 𝑎)𝑣𝑖𝑣𝑗

− 𝑣̅𝑖
𝑛+1𝑣̅𝑗

𝑛+1 

𝑎 =
𝑡 − 𝛥𝑡

𝑡
 

( 20 ) 

 

( 21 ) 

Where t is the current time and Δt is the time step. The total 

mean stress, 𝐸𝑖𝑗, can be found from: 

We still need to account for a residual stress 𝑄𝑖𝑗 , since it 

entirely possible for a mean stress to exist in the absence of mean 

strain. We seek a value of Nij such that 𝑄𝑖𝑗, is minimized while 

avoiding singularities. If the strain 𝑆̂  is invertible (i.e. 𝑆̂𝑖𝑗
−1

 

exists), which is the case for the majority of the mesh elements, 

then Nij is can be calculated directly.  

𝑁𝑖𝑗 = 𝐸𝑖𝑗𝑆̂𝑖𝑗
−1

 ( 23 ) 

The process becomes more problematic if 𝑆̂ is one or two 

dimensional or 𝑆̂ and 𝐸𝑖𝑗  are uncorrelated. In such elements, a 

tensor component analysis is applied in order to invert the 𝑆̂ 

tensor with minimum amount of modification. The 

transformation analysis is based on the fact that the mean strain 

is a symmetric tensor. Symmetric tensors are diagonalizable and 

they have orthogonal eigenvectors.  

𝐸𝑖𝑗
∗ = 𝑔𝐸𝑖𝑗𝑔𝑇  

𝑆̂𝑖𝑗
∗

= 𝜆𝑆̂𝑖𝑗𝜆𝑇 

( 24 ) 

( 25 ) 

After making 𝑆̂  diagonal, the elements with 1D and 2D 

strains will have zero or near-zero entries in one or more 

positions on the diagonal. In the locations that the diagonal of  

𝑆̂𝑖𝑗
∗
 is not zero or very small, the diagonal of 𝑁𝑖𝑗

∗ is calculated. 

𝑁𝑑
∗ =  𝐸𝑑

∗/𝑆̂𝑑
∗
 ( 26 ) 

For degenerate entries heuristics are used to find an 

approximate value for the corresponding diagonal element to 

produce 𝑁𝑖𝑗
∗∗ and  𝑆̂𝑖𝑗

∗∗
 is made spherical using the mean of the 

finite diagonal entries. The resulting stress tensor is calculated. 

𝐸𝑖𝑗
∗∗ = 𝑁𝑖𝑘

∗∗𝑆̂𝑘𝑗
∗∗

 ( 27 ) 

The 𝐸𝑖𝑗
∗∗  and the 𝑆̂𝑘𝑗

∗∗
 are transformed using the 

eigenvectors g and λ, respectively. 

𝐸𝑖𝑗
∗∗∗ = 𝑔−1𝐸𝑖𝑗

∗∗𝑔𝑇−1
 

𝑆̂𝑖𝑗
∗∗∗

= 𝜆−1𝑆̂𝑖𝑗
∗∗

𝜆𝑇−1
 

( 28 ) 

( 29 ) 

The new tensorial viscosity is calculated by inverting the 

𝑆̂𝑖𝑘
∗∗∗

 tensor.  

𝑁𝑖𝑗
∗∗∗ = 𝐸𝑖𝑗

∗∗∗𝑆̂𝑖𝑗
∗∗∗−1

 ( 30 ) 

The resulting tensorial viscosity can be used directly in the 

adjoint equations. Figure (4) shows a comparison of the viscosity 

generated by the new scheme with that from the Spalart-

Allmaras RANS equation. Pronounced differences can be 

observed. The effects on the adjoint sensitivities are significant, 

but do not change the general character of the results. The 

validation of the new method will be detailed in future 

publications. 

 

Fig. 4: Comparison of tensorial viscosity magnitude (top) with 

RANS viscosity for a time averaged DES flow field (bottom). 

Ahmed body 35 rear slant. 

 

3. MORPHING 

This section presents the coupling of the continuous adjoint 

method with a morphing tool for shape optimization in car 

aerodynamics. 

𝐸𝑖𝑗 = 𝐵̂𝑖𝑗 + T𝑖𝑗 = 𝑁𝑖𝑘𝑆̂𝑘𝑗 + 𝑄𝑖𝑗 ( 22 ) 



3.1. Morphing Methodology 

All cases that follow use a mesh parameterization and 

displacement strategy based on volumetric B-splines, which can 

be seen as a Free Form Deformation (FFD) method, and its 

coupling with the continuous adjoint solver. The method uses a 

set of control points in 3D space, in the form of a structured 

control grid, fig(5). CFD mesh points residing inside the 

boundaries of the control grid are displaced following the 

displacement of the control grid points. The use of this software 

in aerodynamic shape optimization is twofold: (a) for the 

parameterization of the surface of an aerodynamic body by 

defining arbitrary control points in 3D space, to be used as the 

design variables and (b) for the displacement of the surface and 

volume nodes of the CFD mesh within each optimization cycle. 

The method exhibits great potential since the cost of each mesh 

displacement is extremely small, the minimum degree of surface 

continuity can be defined a-priori and the setup of each case is 

not cumbersome. 

The version of the continuous adjoint solver employed for the 

morphing does not neglect variations in turbulent viscosity: both 

the mean–flow and turbulence equations are differentiated. The 

differentiation has been performed for the most widely used 

turbulence models (Spalart–Allmaras
(1)

, k-ϵ
(2)

 and k-ω SST
(3)

 

models). While it is case dependent, the omission of the 

turbulence adjoint can result in incorrect or even incorrectly 

signed sensitivities. This will in turn result in an erroneous 

optimization outcome
(4)

. 

The steps of the shape optimization algorithm are listed below: 

(a) Define the control grid to enclose the part of the 

geometry to be optimized. The designer may choose to 

increase the control points number or lower the basis 

functions degree, leading to more localized (but less 

smooth) geometry changes.  

(b) Locate the CFD mesh points that reside within the 

boundaries of the control grid. 

(c) Compute the parametric coordinates of the points 

found in the previous step. The computational cost of 

this step increases with the number of control points 

and the number of the mesh points to be parameterized. 

(d) Solve the flow equations. 

(e) Compute the objective function value and apply the 

termination criterion. 

(f) Solve the adjoint equations.  

(g) Compute the objective function gradient w.r.t the 

boundary CFD mesh nodes to be displaced, 𝛿𝐹/𝛿𝑥𝑚, 

where 𝑥𝑚  are the coordinates of the surface nodal 

points. 

(h) Project the surface sensitivities to control points, in 

order to compute the control points sensitivities, by 

applying the chain rule  

𝛿𝐹

𝛿𝑏𝑙
=

𝛿𝐹

𝛿𝑥𝑚
∙

𝛿𝑥𝑚

𝛿𝑏𝑙
 ( 31 ) 

where 𝑏𝑙 are the control point coordinates.  

(i) Update the control point positions.  

(j) Compute the new surface and volume mesh points 

positions through the volumetric B-splines equations,  

using the already computed parametric coordinates 

associated with each one of them. 

(k) Move to step (d). 

Three test cases are presented.  

 

 

Fig. 5: Boundary of control box and control points coloured 

based on their z coordinate, for the initial (left) and optimized 

(right) geometries. 

 

3.2. Side Mirror Morphing 

The first case is the optimization of a side-mirror of a 

passenger car, with mirror-induced drag minimization being the 

target objective. The Spalart-Allmaras turbulence model with 

wall functions and its adjoint solver (4), were used. The starting 

and final mirror geometries are shown in fig.(5). The mirror-

induced drag is reduced by ~7%. 

 

 

Fig. 6: Initial (left) and optimized (right) rear parts of the 

DrivAer geometry, targeting min. drag force. The boundaries of 

the control box are painted in black. Car surface colored by 

pressure and symmetry plane by velocity magnitude. 

 

 



3.3. Vehicle Rear Spoiler Morphing 

The second case deals with the drag minimization of the fast-

back configuration of the DrivAer car geometry
(5)

. The morphing 

box was placed around the rear part of the car only, targeting the 

formation of a rear spoiler. Again, the Spalart-Allmaras 

turbulence model with wall functions is employed. Fig.(2) shows 

the comparison between the baseline and the optimized rear part 

of the car. The spoiler reduces the drag by 0.2%. 

2.4. S-Bend Duct Morphing 

The third case demonstrates the reduction of total pressure 

losses in an S-bend duct used in the HVAC system of a 

passenger car (an EU ITN AboutFlow test case). Here the flow is 

laminar and the optimization has led to a reduction in total 

pressure losses by more than 60%, (fig.(7)). 

 

 

Fig. 7: Total pressure losses for the initial (top-left) and 

optimized (top-right) ducts. Flow from right to left. The large 

mesh displacements (up to 64% of the inlet diameter, bottom) 

can be efficiently handled by the morphing tool. 

 

4. CONCLUSION 

We have introduced a set of methods and tools for applying 

adjoint-based optimization methods to vehicle external 

aerodynamics. While not unique in concept it is the first such 

method with sufficiently robust and efficient algorithms to allow 

it to be confidently applied within the context of existing vehicle 

simulation workflows. Specifically, the nature of the method 

allows it to be used in conjunction with geometries and grids of 

industrial scale and complexity. The introduction of the time 

averaged DES adjoint approach allows the use of the type of 

high accuracy primal input that is required for reliable and 

dependable aerodynamic prediction and optimization. The 

adjoint solvers, when coupled with appropriate free form 

deformation methods, result in powerful automatic optimization 

methods able to radically improve vehicle aerodynamic 

characteristics at a fraction of the cost of equivalent stochastic 

methods.  

 

REFERENCES 

(1) A.S. Zymaris, D.I. Papadimitriou, K.C. Giannakoglou, C. 

Othmer: Continuous Adjoint Approach to the Spalart--Allmaras 

Turbulence Model for Incompressible Flows, Computers & 

Fluids, 38, p. 1528-1538, (2009). 

(2) E.M. Papoutsis-Kiachagias, A.S. Zymaris, I.S. Kavvadias, 

D.I. Papadimitriou, K.C Giannakoglou: The Continuous Adjoint 

Approach to the k-ε Turbulence Model for Shape Optimization 

and Optimal Active Control of Turbulent Flows, Engineering 

Optimization, Vol. 47(3), p. 370-389, (2015). 

(3) I.S.Kavvadias, E.M. Papoutsis-Kiachagias, G. 

Dimitrakopoulos, K.C. Giannakoglou: The Continuous Adjoint 

Approach to the k-ω Turbulence Model with applications in 

shape optimization, Engineering Optimization, to appear, 2015. 

(4) E.M. Papoutsis-Kiachagias, K.C. Giannakoglou: Continuous 

Adjoint Methods for Turbulent Flows, Applied to Shape and 

Topology Optimization: Industrial Applications, Archives of 

Computational Methods in Engineering, p. 1-45, 2015. 

(5) A. Heft, T. Indinger, N. Adams: Introduction of a New 

Realistic Generic Car Model for Aerodynamic Investigations, 

SAE 2012 World Congress, April 23-26, 2012, Detroit, 

Michigan, USA, Paper 2012-01-0168 

(6) G.K Karpouzas, E. de Villiers. 2014. Level-set based 

topology optimization using the continuous adjoint method. An 

International Conference on Engineering and Applied Sciences 

Optimization. OPT-I 2014 

(7) I.S. Kavvadias, G.K. Karpouzas, E.M. Papoutsis-Kiachagias, 

D.I. Papadimitriou, K.C. Giannakoglou. 2015. Optimal Flow 

Control and Topology Optimization Using the Continuous 

Adjoint Method in Unsteady Flows. Advances in Evolutionary 

and Deterministic Methods for Design, Optimization and Control 

in Engineering and Sciences Computational Methods in Applied 

Sciences Volume 36, 2015, pp 159-173 

(8) P.R  Spalart, W.-H. Jou, M. Strelets, S.R. Allmaras, 1997. 

Comments on the feasibility of LES for wings, and on a hybrid 

RANS/LES approach. In: Liu, C., Liu, Z. (Eds.), Advances in 

LES/DNS, First AFOSR International Conference on DNS/LES. 

Greyden Press, Louisiana Tech University 

(9) L. Hascoet, L. and V. Pascual. 2004. TAPENADE 2.1 user's 

guide. INRIA. http://www.inria.fr/rrrt/rt-0300.html 

(10) E. de Villiers, A. Lock, P. Geremia, Todd Johansen: 

ELEMENTS, A New Aerodynamics Analysis Software 

Aerodynamics, UHTM, HVAC and Cabin Comfort, Soiling and 

Water Management. 


