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ABSTRACT
This paper deals with Computational Fluid Dy-

namics (CFD)-based shape optimization methods ap-
plied to gas and hydraulic turbomachines. In spe-
cific, two major optimization strategies, developed
by the same group, are discussed: gradient–based
methods (GBMs) supported by the continuous ad-
joint approach and metamodel–assisted evolutionary
algorithms (MAEAs).

Regarding GBMs, the continuous adjoint
method for the aero/hydrodynamic design of
turbomachinery bladings is discussed. Full dif-
ferentiation of turbulence models is considered.
Recent developments allowing the computation
of accurate sensitivity derivatives are presented in
brief. Then, the continuous adjoint method is used
for the shape optimization of two Francis turbine
blades. The adjoint method for the optimization
of thermal turbomachinery bladings, by taking into
account conjugate heat transfer (CHT) effects, is
also discussed.

Regarding MAEAs, emphasis is laid on the ways
used to reduce the overall CPU cost of a CFD-
based optimization. In particular, the efficient use
of on–line trained surrogate evaluation models (or
metamodels), the use of asynchronous search on
multiprocessor platforms and the use of Principal
Component Analysis (PCA) as remedies to the curse
of dimensionality problem are discussed. MAEAs
are demonstrated in the aero/hydrodynamic shape
optimization of turbomachinery bladings.

Keywords: Computational Fluid Dynamics,
Continuous Adjoint Method, Gradient–based
methods, Metamodel Assisted Evolutionary Al-
gorithms, Thermal and Hydraulic Turboma-
chines

NOMENCLATURE
F [varies] objective function

T [K] temperature
Ta [F-related] adjoint temperature
b [varies] design variables
u [F-related] adjoint velocity
v [m/s] absolute velocity
w [m/s] relative velocity
p [m2/s2] static pressure divided by

density
q [F-related] adjoint pressure
λ [-] offsprings
µ [-] parents
ν [m2/s] bulk viscosity
νt [m2/s] turbulent viscosity
ν̃a [F-related] adjoint turbulence model vari-

able
ν̃ [m2/s] Spalart–Allmaras model vari-

able

1. INTRODUCTION
During the last years, the cost benefits resulting

from using CFD has given rise to an intense aca-
demic and industrial interest in the use of computa-
tional methods for the design/optimization of thermal
and hydraulic turbomachines.

CFD–based optimization methods can be classi-
fied into deterministic and stochastic ones, accord-
ing to the strategy used to compute the optimal set of
design variables. Deterministic algorithms start with
a given geometry and improve it iteratively based on
the computed or approximated gradient of the ob-
jective function with respect to (w.r.t.) the design
variables. Depending on the initialization, it is not
unlikely for a GBM to be trapped into a local op-
timum. In such a case, the designer will get an optim-
ized rather than an optimal solution. Though global
optimal solutions are always the target, in practice
local optima are highly welcome. The efficiency of
GBMs greatly depends on the method used to com-
pute the necessary gradient. In this respect, the ad-
joint method [1] has been receiving a lot of attention,
since the cost of computing the gradient is, practic-



ally, independent from the number of the design vari-
ables. This makes the method an excellent choice for
large scale industrial optimization problems. In this
paper, recent advances in computing accurate sens-
itivity derivatives for turbulent flows using the con-
tinuous adjoint variant are discussed, [2]. In addition,
a short discussion about adjoint methods for CHT ap-
plications is presented followed by industrial applic-
ations.

Evolutionary algorithms (EAs) are the most pop-
ular representative of stochastic population–based
search methods. In EAs, entrapment to local minima
is highly unlikely, unless the search is stopped early
enough, since almost the entire design space can be
explored. EAs are extremely flexible since the evolu-
tion operators do not interfere with the flow solver;
so, in CFD–based optimization, no access to the
source CFD code is required (black–box evaluation
software). Furthermore, EAs can compute Pareto
fronts of non-dominated solutions in multi–objective
optimization (MOO) problems, with a single run. On
the other hand, a great number of candidate solutions
must be evaluated before reaching the optimal one(s),
leading to a high optimization turnaround time, es-
pecially when the evaluation software is costly (such
as in CFD applications). In addition, the number of
evaluations required increases with the number of the
design variables (curse of dimensionality). A num-
ber of remedies have been proposed in the literat-
ure to tackle the aforementioned two weaknesses of
EAs. Among them is the use Metamodel–Assisted
EAs (MAEAs), asynchronous search, performed on
a cluster of many processors, and the use Principal
Component Analysis (PCA) to identify correlations
between the design variables, [3, 4, 5]. Industrial ap-
plications using the above techniques are presented.

2. ADJOINT METHODS
In this section, the formulation of the continu-

ous adjoint PDEs, their boundary conditions and
the sensitivity derivatives (gradient) expression are
presented in brief. The development is based on the
incompressible Navier-Stokes equations for a non-
inertial Single Rotating Frame (SRF), though their
extension to inertial reference systems, [2], exists
too. The development for incompressible flows is
based on OpenFOAM c©. However, the same tools
have been programmed also for compressible flows,
[6], on an in–house CDF code, running on GPUs, [7].

2.1. Flow Equations
The mean flow equations together with the

Spalart–Allmaras turbulence model PDE, [8], com-
prise the flow or primal system of equations that
reads
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∂wi

∂xi
=0 (1a)
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where wi,Ω j, xm are the components of the relative
velocity vector, rotational speed vector and position
vector, respectively. The absolute (vi) and relative
(wi) velocities are related through vi = wi +ei jkΩ jxk.
Also, p is the static pressure divided by the constant

density, τi j = (ν + νt)
(
∂wi
∂x j

+
∂w j

∂xi

)
are the components

of the stress tensor, ν and νt the bulk and turbulent
viscosity, respectively, ν̃ the Spalart–Allmaras model
variable and ∆ the distance from the wall boundar-
ies. Details about the turbulence model constants and
source terms can be found in [8].

2.2. General Objective Function
Let F be the objective function to be minimized

by computing the optimal values of the design vari-
ables bn, n ∈ [1,N]. A general expression for an ob-
jective function defined on (parts of) the boundary S
of the computational domain Ω is given by

F =

∫
S

FS i nidS (2)

where n is the outward normal unit vector.
Differentiating Eq. 2 w.r.t. to bn and applying the

chain rule yields
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where δΦ/δbn is the total (or material) derivative of
any quantity Φ while ∂Φ/∂bn is its partial derivative.
Operators δ()/δbn and ∂()/∂bn are related by

δΦ

δbn
=
∂Φ

∂bn
+
∂Φ

∂xk

δxk

δbn
(4)

Computing the variation of the flow variables on the
r.h.s. of Eq. 3, either through Direct Differentiation
(DD) or Finite Differences (FD) would require at
least N Equivalent Flow Solutions (EFS, i.e. as if
the flow equations were solved instead). To avoid
this computational cost that scales with N, the adjoint
method is used, as presented in the next subsection.

2.3. Continuous Adjoint Formulation
Starting point of the continuous adjoint formula-

tion is the introduction of the augmented function

Faug = F+

∫
Ω

uiRw
i dΩ+

∫
Ω

qRpdΩ+

∫
Ω

ν̃aRν̃dΩ

(5)

where ui are the components of the adjoint to the re-
lative velocity vector, q is the adjoint pressure and



ν̃a is the adjoint turbulence model variable, respect-
ively. Dropping the last integral on the r.h.s. of
Eq. 5 would result to the so-called “frozen turbu-
lence” assumption which neglects the differentiation
of the turbulence model PDE(s). This assumption
leads to reduced gradient accuracy, possibly even to
wrong sensitivity signs, [9]. To avoid the “frozen
turbulence” assumption implications, the Spalart–
Allmaras model PDE has been differentiated, see [9].
A review on continuous adjoint methods for turbulent
flows can be found in [2].

The differentiation of Eq. 5, based on the Leibniz
theorem, yields
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Then, the derivatives of the flow residuals in the
volume integrals on the r.h.s. of Eq. 6 are developed
by differentiating Eqs. 1 and applying the Green-
Gauss theorem, where necessary. Indicatively, the
development of the CR (Coriolis) term variation
yields∫

Ω
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∂CR,i
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dΩ=−

∫
Ω

2ei jkΩ juk
∂wi

∂bn
dΩ (7)

contributing an extra term to the adjoint momentum
equations. The development of the remaining terms
can be found in [9], [10] and [2].

In order to obtain a gradient expression which
does not depend on the partial derivatives of the flow
variables w.r.t. bn, their multipliers in (the developed
form of) Eq. 6 are set to zero, giving rise to the field
adjoint equations
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where τa
i j = (ν + νt)

(
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∂x j

+
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)
are the components of

adjoint stress tensor. The term marked as CRa results
from the differentiation of CR and can be seen as the
adjoint Coriolis acceleration. Eq. 8c is the adjoint
turbulence model equation, from which the adjoint
turbulence model variable ν̃a is computed.

The adjoint boundary conditions are derived by

treating the flow variations in the boundary integrals
(of the developed form of) Eq. 6, [9, 2]. Indicatively,
at the inlet (S I) and wall (S W ) boundaries, the fol-
lowing conditions are imposed
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where S I−W stands for either S I or S W , depending on
the boundary under consideration. In what follows,
tI is the unit tangent vector parallel to the velocity
at the first cell centre off the boundary and the com-
ponents of the second target vector tII are given by
tII
i = ei jkn jtI

k, where ei jk is the Levi-Civita symbol.
The outlet (S O) conditions for the adjoint problem
and boundary conditions for the ν̃a field can be found
in [9, 2].

In industrial applications, the wall function tech-
nique is used routinely in analysis and design. When
the design is based on the adjoint method, consider-
ing the adjoint to the wall function model becomes
necessary. The continuous adjoint method in optim-
ization problems, governed by the RANS turbulence
models with wall functions, was initially presented
in [11], where the adjoint wall function technique
was introduced for the k − ε model and a vertex–
centered finite volume method. The proposed formu-
lation led to a new concept: the “adjoint law of the
wall”. This bridges the gap between the solid wall
and the first node off the wall during the solution of
the adjoint equations. The adjoint wall function tech-
nique has been extended to flow solvers based on
cell-centered finite-volume schemes, for the k − ω,
[12], and Spalart–Allmaras , [2], models.

After satisfying the adjoint PDEs and their
boundary conditions, the remaining terms in Eq. 6
yield the sensitivity derivatives
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where TS1 to TS4 can be found in [2].

2.4. Differentiation of Turbulence Models:
A Convincing Example

In the application of this section, the gain from
overcoming the “frozen turbulence” assumption is
discussed. In Figure 1, the sensitivity derivatives of
the total pressure losses objective function,

Fpt =−

∫
S I,O

(
p +

1
2

v2
k

)
vinidS

w.r.t. the coordinates of Bézier–Bernstein control
points parameterizing a compressor cascade airfoil
are illustrated. Here, the low-Re variant of the
Spalart–Allmaras model is used. It can be seen that
the “frozen turbulence” assumption leads to quite
wrong sensitivities while the adjoint approach that
takes into consideration the differentiation of the tur-
bulence model reproduces the outcome of the ref-
erence method (FD). More on the gain in accuracy
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Figure 1. Shape optimization of a compressor cas-
cade with Re = 3.3× 105. Sensitivity derivatives of
the total pressure losses function F w.r.t. the co-
ordinates of the Bézier–Bernstein control points
parameterizing the suction (first half) and pres-
sure (last half of the horizontal axis) airfoil sides.

from using the adjoint law of the wall when the flow
simulation employs wall functions can be found in
[2].

2.5. Continuous Adjoint for Conjugate
Heat Transfer Analysis

This section discusses some points of the math-
ematical development and implementation of the
continuous adjoint method to CHT applications.
CHT comprises the concurrent solution of the mean
flow and energy equations over the fluid domain and
the energy equation over an adjacent solid domain.
The fluid and solid domains communicate through
the Fluid/Solid Interface (FSI). The conditions im-
posed along the FSI boundary, Figure 2, are (index
F stands for fluid-related quantities and S for solid-

related ones)

QS =−QF ⇒ kS ∂T S

∂n

∣∣∣∣∣∣
FS IS

= −kF ∂T F

∂n

∣∣∣∣∣∣
FS IF

(11a)

T S =T F =T FS I (11b)

where Q is the heat-flux and kF=ae f f cp is the thermal
conductivity. Eq. 11a expresses the equality of heat
fluxes along the FSI while Eq. 11b states that the tem-
perature at the coinciding nodes of the solid and fluid
meshes is the same.

FSIF

FSIS

F

S

FI

SI

FLUI
D

SOLI
D

Figure 2. The fluid(F)/solid(S ) interface. Faces
F and S coincide. FI and S I are the centres of
the first cells off the fluid and solid boundaries,
respectively.

In the application examined, the optimization
aims at minimizing the maximum temperature inside
an internally cooled turbine cascade, Figure 3. Since
such a min./max. objective can not be differentiated,
a differentiable surrogate should be used. It is pro-
posed to use a sigmoid function

FT =

∫
ΩS

fsigdΩ∫
ΩS

dΩ
, fsig =1 −

1
1 + ek2(T−Tc)+k1 (12)

where ΩS is the volume of the solid domain, Tc is a
critical (high) temperature threshold and Ts <Tc is a
safety threshold to be defined by the designer. Con-
stants k1 and k2 take on values that lead to fsig(Ts)=ε
and fsig(Tc) = 1 − ε, where ε is a user–defined infin-
itesimal positive number.

Figure 3. Temperature distribution inside an
internally cooled turbine blade. The fluid (not
shown in the figure) and solid domains are
coupled based on the boundary conditions presen-
ted in Eqs. 11, while heat exchange between the
solid domain and the cooling passages is simu-
lated using a 1D heat exchange equation.



The augmented objective function for CHT op-
timization problems is written as

Faug = F+

∫
ΩF

uiRw
i dΩ+
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where RT F
,RT S

are the energy equation PDEs over
the fluid and solid domains, respectively, and T F

a ,T
S
a

are the corresponding adjoint temperatures. Follow-
ing a process similar to that described in sections 2.2
to 2.4, the field adjoint equations, adjoint boundary
conditions and sensitivity derivatives expression can
be derived. In the interest of space, these are omit-
ted herein. However, it is interesting to note that
the adjoint boundary conditions at the FSI are of the
same type as the primal conditions. Eq. 11. They in-
clude the conservation of the adjoint heat flux at the
FSI and the same adjoint temperature values for both
sides of the FSI. This remark holds only for object-
ive functions which do not include the temperature
values along the FSI.

The continuous adjoint approach to CHT prob-
lems was utilized to support a gradient-based al-
gorithm to minimize FT with Ts = 515 K and Tc =

525 K for the geometry presented in Figure 3; the
turbine blade airfoil is parameterized using NURBS
control points and the cooling holes are at fixed po-
sitions. The highest deformation is located close to
the trailing edge, Figure 4, decreasing the maximum
blade temperature by more than 2 K.

Figure 4. Shape optimization of an internally
cooled turbine blade, targeting the minimization
of the maximum temperature over the solid. Tem-
perature distributions in a blow-up view close to
the trailing edge of the initial (left) and optimized
(right) geometries.

2.6. Turbomachinery Applications of
Adjoint-based Optimization

Two industrial applications are presented in this
section. The first one is concerned with the shape
optimization of a Francis turbine runner in order to
suppress cavitation, i.e. maximizing the minimum
pressure on the blade surface. Following the same
line of reasoning for differentiating a max./min prob-
lem as the one presented in section 2.5, a sigmoid
function similar to Eq. 12 is used, by defining a cavit-
ation threshold pc and a safety threshold ps. No

shape parameterization was used. Instead, the nor-
mal displacements of the blade wall nodes acted as
the design variables, after appropriately smoothing
the computed sensitivity derivatives. The pressure
distributions over the initial and optimized bladings
are presented in Figure 5.

The second application deals with the multi-
point design of a different Francis runner targeting
the maximization of the weighted sum of the efficien-
cies at three operating points, ranging from 40% to
100% of the nominal mass flow rate Qnom

F = 0.6FQ100 + 0.25FQ71.5 + 0.15FQ40 (14)

Blade shapes resulting after 8 optimization cycles of
the multi-point as well as the three (separate) single-
point optimizations (for the three mass flow rates) are
depicted in Figure 6. The multi-point optimization
deforms the blade in the same direction as the single-
point optimization for the nominal flow rate, since
this point has the highest weight in Eq. 14. The other
two single-point optimizations for Q = 0.715Qnom
and Q = 0.40Qnom deform the blade in the opposite
direction. This clearly reveals the contradictory tar-
gets in multi-point optimization.

Figure 5. Optimization of a Francis runner blade
targeting cavitation suppression. Top: pressure
distribution over the initial blading; white isolines
encircle the cavitated areas. Bottom: pressure dis-
tribution over the optimized blading.

3. OPTIMIZATION METHODS BASED
ON EAS

Regarding EAs, emphasis is laid on ways to re-
duce the optimization turnaround time in large–scale
applications. The most frequently used technique is
the use of surrogate evaluation models (metamod-
els) giving rise to MAEAs. Either EAs or MAEAS
can further be enhanced by the Principal Component
Analysis (PCA) technique aiming at efficiently hand-
ling problems involving a great number of design



Figure 6. Multi-point optimization of a Francis
runner Blades as seen from the trailing edge (left)
and a blow–up view close to the shroud (right).
The initial blade is depicted in grey, the result of
the multi-point optimization in red, while the res-
ults of single-point optimizations at the three op-
erating points are shown in green (Q = Qnom), yel-
low (Q=0.715Qnom) and magenta (Q=0.4Qnom).

variables. Over and above to MAEAs (with or
without PCA), the concurrent evaluation of the off-
spring of each generation on the available processors
of a multi-processor system may further reduce the
optimization turnaround time. Asynchronous EAs
(AEAs), remove the synchronization barrier at the
end of each generation, and fully exploit all the avail-
able computational resources. All these techniques
are incorporated in the general purpose optimiza-
tion platform EASY (Evolutionary Algorithm SYs-
tem, http://velos0.ltt.mech.ntua.gr/EASY) developed
by the authors’ group.

On–line trained metamodels (radial basis func-
tion/RBF networks) for each candidate solution are
used according to the Inexact Pre-Evaluation (IPE)
technique, [3]. The first few generations are car-
ried out as a conventional EA (with µ parents and λ
offspring) and the MAEA starts once a user–defined
number of entries have been stored in the database
(DB) of already evaluated individuals. During the
IPE phase all population members are pre–evaluated
on the surrogate models trained on–the–fly. This
training is carried out on the neighboring (in the
design space) individuals in the DB. Then, based on
the outcome of the pre–evaluations on the metamod-
els, a small number of the most promising members
(λIPE <<λ) are re–evaluated on the CFD model.

Metamodels can be also employed in AEAs
(AMAEAs), after appropriately adapting the IPE
scheme, [4], since the notion of generation does not
exist anymore. Once an evaluation is completed and
the corresponding processor is idle, a new individual
is generated (using the evolution operators) and as-
signed to this processor. When the IPE is activated
on an instantaneously idle processor, instead of gen-
erating a single individual, a small number (NIPE)
trial ones are generated. For each one of them, a
local metamodel is trained and its objective function

value is approximated. The best (according to the
metamodel) among the NIPE individuals is, then, re–
evaluated on the exact model. An example of the
gain in the optimization turnaround time by using
AMAEA instead of MAEA, is shown in 7. This
is concerned with the design of a peripheral com-
pressor cascade for minimum viscous losses, where
AMAEA and MAEA were allowed to perform up
to 12 concurrent evaluations on a many–GPUs plat-
form. The IPE was activated after 80 entries were
gathered in the DB and λIPE = 8 members were re–
evaluated on the exact tool for the MAEA. For the
AMAEA, NIPE =8 trial members were generated be-
fore selecting the one to be re–evaluated on the idle
processor.
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Figure 7. Optimization of a peripheral com-
pressor cascade for minimum viscous losses.
Top: Comparison of the convergence histories
of MAEA and AMAEA. AMAEA outperforms
MAEA which is known to perform much better
than a conventional EA. Bottom: Pressure distri-
bution on the optimal geometry.

EAs or MAEAs (along with their asynchron-
ous variants), when applied to engineering optimiz-
ation problems with a great number of design vari-
ables, suffer from the co–called “curse of dimen-
sionality”. A remedy to this problem is to pro-
cess the elite set in each generation, using PCA and,
based on the so acquired information to: (a) better
guide the application of the evolution operators (to
be referred as EA(PCA)) and (b) reduce the num-
ber of sensory units during the metamodels training
(M(PCA)AEA), [5]. In (a), the design space is tem-
porarily aligned with the principal component direc-
tions and the crossover and mutation operators are
applied on the rotated individuals. This rotation ac-
cording to the principal directions leads to a problem
with as much as possible separable objective func-
tion, which is highly beneficial. In MAEAs, dur-
ing the metamodel (RBF network) training, PCA can



be used to reduce the dimension of the metamod-
els built. The variances of the design variables are
used to identify the directions along which the elite
members are less or more scattered. In the developed
method, the RBF network sensory units correspond-
ing to the directions of the design space with high
variances are filtered out. Reducing the number of
input parameters in the metamodel increases the pre-
diction accuracy and accelerates the training process.
The simultaneous use of PCA for both purposes is
the so–called M(PCA)AEA(PCA).

An example of the use of PCA in both the
metamodels and the evolution operators is shown in
figure 8. This is concerned with the two–objective
constrained design of a Francis runner parameterized
using 372 design variables. The first objective ( f1)
is related to the “quality” of the velocity profile at
the runner outlet while the second one ( f2) to the
blade loading. This case is studied with both MAEA
and M(PCA)AEA(PCA) using a (µ, λ)=(20, 90) EA.
During the IPE phase, λIPE = 8 members of each
generation were re–evaluated on the CFD model.
For the MAEA, the IPE phase was activated after
600 entries were stored in the DB, while for the
M(PCA)AEA(PCA) only after 300 DB entries.
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Figure 8. Two–objective design of a Francis
runner at three operating points for optimiz-
ing the outlet velocity profile (min f1) and the
blade loading (min f2). Top: Comparison of the
fronts of non–dominated solutions computed by
the MAEA and the M(PCA)AEA(PCA), at the
same CPU cost. Bottom: 3D view and pressure
field over the Francis runner, at the best efficiency
operating point corresponding to non–dominated
solution A.

4. USE OF EAS AND ADJOINT WITHIN
THE RBF4AERO PROJECT

The aforementioned optimization methods,
either stochastic (EAs) or gradient–based (adjoint)
ones, are used for external aerodynamic optimization

problems too. Some of these methods were appro-
priately adapted to fit the needs of the RBF4AERO,
EU funded, project http://www.rbf4aero.eu/. The
aim of the project is to develop the so–called
RBF4AERO Benchmark Technology, an assembly
of numerical (CFD, CSD solvers etc), morphing and
optimization tools, capable of handling aerodynamic
design/optimization problems. The morphing tool
used is based on RBF networks and allows for fast
morphing of the shapes to be optimized and the
surrounding computational mesh, [13]. The optim-
ization tool comprises both EAs and gradient–based
methods assisted by the continuous adjoint method.

One of the cases to be studied within
RBF4AERO is concerned with the minimization of
the drag coefficient of a small aircraft underwing
nacelle at two angles of attack, namely 0o and 8o.
The nacelle is designed for the altitude of 2000m,
with M∞ = 0.08 and Rec = 3×106 based on the wing
chord. The nacelle rotations around the y and z axes
and the nacelle nose scaling were the three design
variables used. Starting from a baseline geometry
(figure 9 top), for each candidate solution the nacelle
shape and the computational mesh was morphed
using the customized RBF–based morphing tool of
the RBF4AERO platform. The basic incompressible
flow solver of OpenFOAM c© (simpleFoam) was used
as the evaluation tool, using the Spalart–Allmaras
turbulence model.

In this paper, a (µ, λ)=(10, 30) MAEA was used
for the optimization. The MAEA is capable of locat-
ing the Pareto front of non–dominated solutions after
100 evaluations on the CFD tool (Figure 9 bottom).

The limited range of the CD values in the non–
dominated front is due to the fact that, in all elite
members, the two first design variables do not vary
significantly and only the third design variable (i.e.
the one related to the nose scaling) varies. This ob-
servation can be also backed-up by the magnitude of
the drag force sensitivities w.r.t. the three design vari-
ables, presented in table 1 and computed using the
continuous adjoint method.

b y rot. z rot. scaling
dF/db −1.9 × 10−4 −4.4 × 10−7 5.9 × 10−4

Table 1. Sensitivity derivatives w.r.t. the
three design variables parameterizing the nacelle
shape, at 8o farfield flow angle. It can be observed
that the nose scaling has the greatest impact on
the drag force value.

5. SUMMARY
This paper presented the use of either stochastic

or gradient–based optimization methods in shape op-
timization of thermal and hydraulic turbomachines.
Regarding continuous adjoint methods, some recent
advances in the computation of accurate sensitivities
were discussed and applied to industrial cases, lead-
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Figure 9. Two–objective optimization of an un-
derwing nacelle (an RBF4AERO test case). Top:
Baseline geometry. Bottom: Front of non–
dominated solutions resulted after 100 evalu-
ations on the exact/CFD model.

ing to the optimization of two Francis runners at a
very small CPU cost (20 and 8 optimization cycles
for each of the two cases). Regarding evolution-
ary algorithms, techniques involving surrogate evalu-
ation models, asychronous search on multi-processor
platforms and PCA have made the optimization of in-
dustrial cases with a great number of design variables
and objectives possible.
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