
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

UNSTEADY ADJOINT TO THE CUT-CELL METHOD USING MESH
ADAPTATION ON GPUS

K.D. Samouchos1, S.G. Katsanoulis1, and K.C. Giannakoglou1

1National Technical University of Athens, School of Mech. Eng., Parallel CFD & Optimization Unit,
Athens , Greece

e-mail: ksamouchos@yahoo.com, skatsanoulis@gmail.com, kgianna@central.ntua.gr

Keywords: Cut-Cell Method, Moving Boundaries, Adjoint-Based Optimization, GPUs.

Abstract. In its first part, this paper presents a cut-cell method for simulating 2D unsteady
inviscid flows of compressible fluids in domains with moving boundaries. To solve shape opti-
mization problems, the gradient of the aerodynamic shape optimization with respect to (w.r.t.)
the design variables is computed via the continuous adjoint approach.

An automatic grid adaptation method based on a quad-tree data structure allows low mem-
ory usage for storing geometric data. The no-penetration condition along the surface of the
emerged bodies, is implemented using a second-order cut-cell approach. To avoid numerical
instabilities during the solution of the flow and adjoint PDEs, very small cut-cells are merged
with neighboring active cells to yield the finite-volume where the flow or adjoint equations are
integrated.

In transonic flow simulations, the Cartesian grid is adapted not only to the solid boundaries
but, also, to the evolving flow discontinuities. The refined grid follows the moving solid wall and
discontinuities, by means of local refinement and derefinement processes. The paper focuses on
the schemes used to interpolate the flow solution fields between successive time-steps, as the
grid becomes adapted to the moving geometry. During the solution of the unsteady adjoint
PDEs, since the adjoint solver marches backwards in time and the adapted Cartesian grids are
continuously changing, care should be taken so as to have full access to the necessary geometric
quantities at all cells, even if these did not exist at previous time-steps. Both the primal and
adjoint solvers are programmed on GPUs (Graphics Processing Units), using CUDA-C, to
reduce the optimization wall-clock time.

Results are presented for both the analysis and optimization problems.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

1 Introduction

Flows with complex moving boundaries are of utmost importance in many engineering ap-
plications. The traditional approach involves the use of body-fitted grids and the corresponding
discretization methods. Nevertheless, irrespective of the grid type (structured or unstructured),
these methods require a highly delicate and often costly grid deformation process, especially
when large boundary movements occur. A viable alternative encompasses the use of the Im-
mersed Boundary Method, originally proposed by Peskin [1]. In the latter, the computation
takes place on a Cartesian grid allowing for a simple and automatic grid generation.

Mittal and Iaccarino [2] discern two basic approaches stemming from the generalized term
”Immersed Boundary Methods”, namely the continuous and discrete forcing approaches. The
continuous one makes use of an additional source term in the momentum equations to approx-
imate the effect of solid boundaries. On the contrary, discrete forcing approaches rely on the
discrete representation of the immersed boundary without altering the governing equations. Pre-
vailing among them is the cut-cell finite volume method [3, 4] which guarantees both global and
local conservation. This is achieved through the reshaping of cells that are intersected by the
solid boundary, i.e., the so-called cut-cells, by making them conform to the boundary while the
remaining fraction of the cut-cells as well as cells lying in the interior of solid bodies are totally
discarded.

The present paper deals with the development of a cut-cell finite volume method for 2D
inviscid flows of compressible fluids. In order to avoid numerical stability issues caused by
the existence of small cells, a cell-merging technique is adopted. To maximize the accuracy of
the flow simulation, the grid in the vicinity of both the solid boundary and flow discontinuities
(e.g. shock waves) is refined. Extending this idea to moving boundaries, grid is dynamically
adapted following their motion, which calls for a method to project the solution onto the grid in
the next time-step. The software is developed in order to run on NVIDIA GPUs.

In addition, an optimization loop is implemented based on the continuous adjoint approach.
That is, after the adjoint PDEs are derived from the flow equations, both for steady and unsteady
flows, these are discretized and numerically solved utilizing the already developed method. In
the course of this process, the correct computation of the derivatives of geometric quantities
is crucial since the special nature of the stationary Cartesian grid must taken into account.
Problems related to the maximization of lift of a stationary airfoil as well as the time-averaged
lift of a pitching airfoil are showcased.

2 Grid Generation

The computational grid is dynamically generated based on criteria which make it compatible
with the cut-cell approach for solving the flow and adjoint equations around stationary and
moving bodies. Starting point is a uniform Cartesian grid within a rectangular domain; the
initial cell volume is defined by the user (Ωmax). Then, cells intersected by the solid walls are
recursively subdivided into four quadrants. The basic rule governing this iterative process is
that cut–cells with area greater than Ωmin should further be subdivided; Ωmin is a threshold
value defined by the user. This extra cell refinement may affect neighboring non–cut–cells
which should also be subdivided in order to meet a second rule stating that a cell face cannot
have more than two neighbors. This rule prevents the formation of tiny grid cells in contact
with much greater ones, which makes the CFD solver prone to numerical inaccuracies. Two
additional rules must be satisfied, see fig. 1. According to the first of them, cut-cells are not
allowed to have any of their four edges intersected twice by the solid wall. The last rule does

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

not allow cut-cells to have their four edges intersected by solid walls. In either case, the cell
must be subdivided further. In the case of a stationary isolated airfoil, the refined Cartesian grid
for an inviscid flow simulation looks like that shown in fig. 2.

Figure 1: Visual representation of the third and fourth rule imposed during the Cartesian grid adaptation process,
as described in the text. Both cases are not acceptable.

x

y

(a)

x

y

(b)

Figure 2: Two views on the Cartesian grid in the vicinity of the boundary of an isolated airfoil, for an inviscid flow
simulation. Further local refinement is possible if flow discontinuities appear.

Grid generation is based on a quad-tree data structure [5] which allows fast operations and
ensures easy identification and access to neighboring cells, as required during the numerical
solution of the flow and adjoint equations. Each and every cell is given a unique pair of inte-
gers (i, j), facilitating a lot the computation of geometric quantities such as cell volumes and
barycentric coordinates. Among other, this two-index numbering system results to a noticeable
reduction in memory footprint.

A special treatment of the cut–cells is needed in order to satisfy the conservation equations
in the vicinity of solid boundaries with the required accuracy. For all cut–cells, their parts
belonging to the non-fluid domain are discarded. This gives rise to fluid or active cells which
can be shaped as triangles, quadrangles or pentagons; taking into account the aforementioned
constraints, no other shape is possible in a 2D problem. By definition, the active cell area
corresponds solely to the part of the cell which is within the fluid. In the course of this process,
new geometric quantities such as the newly formed edges, the active area and the corresponding
barycenter position appear.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

A common problem in the cut-cell method is the creation of very small cells, depending on
the instantaneous locations of the solid walls within the grid. It is known [7, 8] that the presence
of these cells might cause convergence issues. To tackle this problem, a cell-merging approach
is used, as shown in fig. 3, according to which the flow variables are stored at the barycenter of
the merged cell.

P
1

P
2

Figure 3: Three cut–cells with barycenters P1, P2 and P3. Since P2 and P3 are considered as very small cut-cells,
these are merged into a single cell with barycenter Pnew. Flow variables for the newly formed cell are all stored at
Pnew.

3 Governing Equations & Discretization

The Euler equations for unsteady compressible flows in an inertial reference frame are writ-
ten as

∂
−→
U

∂ t
+

∂
−→
f x

∂x
+

∂
−→
f y

∂y
=
−→
0 (1)

where
−→
U =

[
ρ ρu ρv E

]T is the vector of conservative variables and
−→
f x =

[
ρu ρu2 + p

ρuv u(E + p)
]T ,
−→
f y =

[
ρv ρuv ρv2 + p v(E + p)

]T are the inviscid fluxes in the x and y
direction, respectively, ρ the fluid density, u and v the Cartesian velocity components, p the
static pressure and E the total energy per unit volume.

The integration of equations (1) is based on the cell-centered finite volume scheme. The
integration volume consists of the part of the cell that lies in the fluid. For the merged cells, this
volume is defined as the fluid part of each of the constituent cells (e.g. the blue area in fig. 4).
According to this, if Ω

k+1
P is the control volume of a cell with centroid P (to be referred to as

cell P) at time-step k+1, Sk+1
P is its boundary and−→n is its normal unit vector, the corresponding

residual of the flow equations is

−→
R P :=

∫
Ω

k+1
P

∂
−→
U

∂ t
dΩ +

∫
Sk+1

P

−→
f i ·ni dS =

−→
0 (2)

The discretization of eqs. (2) is based on the Roe [9] scheme. The no-penetration condition
is imposed along the solid walls, that is, (−→u −−→u w) ·−→n =

−→
0 , where −→u w is the wall velocity.

Based on the latter, at all cut-cells’ boundary edges that correspond to solid walls the flux
vector becomes

−→
f w =

[
ρuw,n ρuw,nu+ pnx ρuw,nv+ pny uw,n(p+E)

]T where uw,n =
−→u w ·

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

−→n . This flux corresponds to the center B of the solid boundary segment of the cut–cell as shown
in fig. 4(a). Variables appearing in

−→
f w are computed at point B using the Taylor expansion

formula
−→
U B =

−→
U P+

−→
PB ·

(
∇
−→
U
)

P
where

(
∇
−→
U
)

P
is computed using a weighted least–squares

method. The same process can be extended in the case of merged cells, as shown in fig. 4(b)

P

B

(a)

P
1

P
2

(b)

Figure 4: (a): The no-penetration condition is imposed via
−→
f w at point B using the extrapolated variables from

barycenter P. (b): Two cut–cells with barycenters P1 and P2 are merged into a single cell with barycenter Pnew.
Values at Pnew are extrapolated to B and C in order to compute

−→
f w1 and

−→
f w2.

Regarding the discretization of the temporal term in eq. (2) when the immersed body moves
inside the Cartesian grid, four different cases might occur. The simplest case is that of fluid
cells at time-step tk which remain intact at tk+1. Thus, the integration volume is unchanged and
a second-order backward differentiation scheme is readily applied. The second case concerns
all cells being intersected by the solid boundary at any of the three time-steps (tk−1, tk, tk+1). To
account for changes in ΩP, the Reynolds transport theorem [10] is applied,∫

Ω
k+1
P

∂
−→
U

∂ t
dΩ =

∂

∂ t

∫
Ω

k+1
P

−→
U dΩ −

∫
Sk+1

P

−→
U uw,n dS (3)

For the first term on the r.h.s., a second-order backward scheme is used

∂

∂ t

∫
Ω

k+1
P

−→
U dΩ ' 1

2∆t

(
3
−→
U k+1

P Ω
k+1
P −4

−→
U k

PΩ
k
P +
−→
U k−1

P Ω
k−1
P

)
(4)

while, for the surface term, the assumption∫
Sk+1

P

−→
U uw,n dS'−→U k+1

w

∫
Sk+1

P

uw,n dS

=
−→
U k+1

w

(
∂ΩP

∂ t

)k+1

'
−→
U

k+1
w

2∆ t

(
3Ω

k+1
P −4Ω

k
P +Ω

k−1
P

)
(5)

is made, where
−→
U k+1

w is the vector of flow variables computed at the wall face.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

According to the third case, a cell lying entirely in the solid boundary at tk, becomes fluid
cell at tk+1. In such a case, Ω k

P and Ω
k−1
P are equal to zero and eqs. (4) and (5) are properly

transformed. Finally, cells that are solidified should transfer their conservative values to their
neighboring cells in the fluid region via a merging process.

4 Dynamic Grid Adaptation

In case of moving solid boundaries, the grid must continuously be adapted to the new bound-
ary shape. During the dynamic adaptation, which embodies both coarsening and refinement
tasks, the resulting grid at each new time-step must comply with the four rules mentioned in
section (2). The grid adaptation from one time-step (tk) to the next (tk+1) takes place as follows:

Initially, the grid undergoes a coarsening process, according to which every cell with vol-
ume less than Ωmax is merged with its neighbors. Then, the solid boundary is moved to its
new position and, starting from the just coarsened grid, cells split anew in the vicinity of the
displaced wall. Through this procedure, grid refinement in the vicinity of the new position of
the solid boundary is achieved while the no longer necessary refined grid around the previous
wall position is canceled. This process is exemplified in fig. 5. Along with the grid adaptation,
interpolation should be employed to transfer the flow solution from the previous time-step (tk)
to the new one (tk+1).

(a) (b)

(c) (d)

Figure 5: Translational periodic, in the vertical direction, motion of an airfoil. Adapted grid at four time-steps
within the same period.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

In order to attribute values to the conservative variables at the barycenter of the newly formed
cells at tk+1, an intermediate step (t∗) at which the solid boundary is considered to its previous
position (tk) and, then, immersed in the new grid (tk+1), is used. The flow variables

−→
U ∗ at

the intermediate step represent the time history of the newly created cells at tk+1. The values
transferred from tk to t∗ must ensure the satisfaction of the conservation laws.

For the sake of clarity, two simple cases will be demonstrated. According to the first one,
due to the movement of the solid boundary, a cell at tk is decomposed into four smaller cells at
tk+1, fig. 6. Considering that each of the newly formed cells Pi should share the same

−→
U values

Figure 6: Cell P at step tk, decomposed into four smaller cells Pi at step tk+1, makes use of an intermediate step
(t∗) in order to attribute values to the flow variables

−→
U to each of the newly formed cells at step tk+1.

at tk, it is −→
U ∗Pi

=
−→
U k

P , i = 1, ... ,4 (6)

where
−→
U k

P is the flow variables array of cell P, at tk, and
−→
U ∗Pi

is the unknown vector of conser-
vative variables for each newly formed cell Pi at t∗.

Figure 7: The process of associating values of the flow variables
−→
U to the newly created cell barycenter P at tk+1.

In the second case, four cells Pi at tk are merged to form a single new cell, fig. 7. In this case,

−→
U ∗P =

4

∑
i=1

−→
U k

Pi
Ω

k
Pi

Ω
∗
P

(7)

The values
−→
U ∗P, computed by eqs. (6) and (7) and Ω ∗P, are considered as the flow fields and

volumes, respectively, at tk and are referred to as
−→
U k

P and Ω k
P in eq. (4). The same process must

be followed in order to compute
−→
U k−1

P and Ω
k−1
P .

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

5 Validation of the flow solver

In this section, the use of the flow solver in steady and unsteady flows is demonstrated and
validated against other results. The steady flow case encompasses grid refinement due to the
formation of a shock wave over the suction-side of an airfoil with non-zero incidence, while
the unsteady case showcases the grid refinement according to both the airfoil motion and the
formation of the shock wave.

The software was programmed in CUDA-C and runs on NVIDIA GPUs by taking advantage
of the superior hardware characteristics they exhibit compared to CPUs. In order to exploit the
advantages of GPUs, special care must be taken in memory handling. Moreover, an appropriate
solution method should be chosen, which can be efficiently parallelized. Here, the discretized
equations are solved in each pseudo-time step using the Jacobi method. The simulation was
carried out on a single computational node with two NVIDIA Tesla K40 GPUs with 12 GB of
GPU memory each.

The NACA0012 airfoil is investigated at transonic flow conditions (M∞ = 0.8 and a∞ =
1.25 deg). The Mach number field around the airfoil with the adapted grid in the vicinity of the
shock wave is presented in fig. 8. The same case was studied using several Euler-flow solvers
on body-fitted grids in [11] and, as shown in Table 1, the results of the present cut–cell solver
are in good agreement with those solvers.

Mach

1.5

1.4

1.3

1.2

1.1

1

0.9

0.8

0.7

0.6

0.5

0.4

0.3

0.2

0.1

Figure 8: Transonic flow around NACA0012 airfoil-Steady flow: Computed Mach number field.

CL

Present cut–cell method 0.3492
Body–fitted Min 0.3482
Body–fitted Max 0.3562

Table 1: CL comparison between the present cut-cell method and other solvers using body-fitted grids where Min
and Max denote the spread of CL values found in [11].

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

As far as the unsteady flow solver is concerned, its validation is carried out using the same
airfoil undergoing a periodic pitching motion about c/4 (c is the chord) with 2.51o amplitude
and 0.016o mean angle of attack. The Mach number is 0.755 and the reduced frequency k := ω

2V∞

is 0.0814, where ω is the angular velocity of the airfoil. The computed Mach number fields at
the two extreme positions of airfoil motion are shown in fig. 9.

This case has been investigated experimentally, by Landon [12]; over and above, an in-house
Euler code [13] running on a body-fitted grid was used to get CFD results to compare with.
Comparisons are presented in fig. 10.

(a) (b)

(c) (d)

Figure 9: Transonic flow around the pitching NACA0012 airfoil: (a),(c): Dynamically adapted grid with further
refinement in the vicinity of the shock wave and (b),(d): Mach number fields at the two extreme positions of airfoil
motion.

6 Formulation of the Steady Adjoint Method

The objective function to be maximized is the lift of an airfoil, namely

F =
∫
Sw

pnkrkdS (8)

where rk are the components of the unit vector normal to the freestream velocity. The airfoil
is parameterized using Bézier curves, the coordinates of the control points of which are the
design variables (bq) of the optimization process. The necessary derivative of F is computed by

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

-0.4

-0.2

 0

 0.2

 0.4

 0.6

-4 -2 0 2 4

Angle (deg)

CL

Present Cut-Cell Method
In-house Body-Fitted

Landon

Figure 10: Time-evolution of the lift coefficient, in terms of the angle formed between the airfoil chord and the
horizontal axis. Present results are contrasted with CFD results obtained using an in-house Euler solver for body-
fitted grids [13] and measurements by Landon [12].

expanding it as an augmented objective function Faug = F +
∫
Ω

ΨnRndΩ , where Ψn, n = 1,4

are the adjoint variable fields. By differentiating Faug w.r.t. to the design variables and setting
the multipliers of the variations in all flow variables equal to zero, the steady adjoint equations

−Anmk
∂Ψn

∂xk
= 0 (9)

arise [6]. Boundary conditions to be imposed along the solid wall are Ψk+1nk + nkrk = 0 and,
in the farfield, Ψn = 0, n = 1,4. Then, the gradient of F w.r.t. the design variables bq becomes

δF
δbq

=
∫
Sw

p
δ (nkrkdS)

δbq
+
∫
Sw

(Ψk+1 p−Ψi fik)
δnk

δbq
dS

−
∫
Sw

Ψi
∂ fik

∂xl
nk

δxl

δbq
dS+

∫
Sw

Ψi
∂ fil

∂xl

δxk

δbq
nkdS (10)

Eq. (10) requires the computation of δxk
δbq

which stands for the variation in the airfoil’s surface
w.r.t. the design variables. In contrast to body-fitted grids, the Cartesian grid used in the cut-cell
method is stationary even if the geometry changes during the optimization process. This must
be taken into consideration and, thus, the above term is computed at the intersection points
of the geometry with the Cartesian grid. Each intersection point can move only along the
corresponding cut-cell’s edge. Consequently, it is the projection of δxk

δbq
to the edge direction

that must only be taken into account in order to compute the derivatives at the mid-point of each
cut-cell’s solid edge, as shown in fig. 11.

7 Steady Adjoint Results

Below, the shape optimization of a symmetric airfoil is examined. The airfoil (M∞ = 0.44
and a∞ = 0 deg) pressure and suction sides are both parameterized using Bézier curves. The
design variables are the coordinates of six control points marked with empty circles, fig. 12.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

δx

δb geometry

δx

δb cell

δx

δb cell

δx

δb geometry

δx

δb face

δx

δb geometry

Figure 11: The red polyline denotes the surface of the geometry which cuts the cell in two points. The blue line
segment is part of the boundary of the cut-cell. The derivatives of the boundary w.r.t. the design variable b (red
vectors) are initially computed at the points marked with squares by differentiating the geometry’s parameteriza-
tion. These derivatives are used to compute δ

−→x
δb at the intersection points marked with circles which are taken into

account to compute the derivative at the mid-point of the line segment.

Initial Airfoil
Initial Bezier Polygon

Design Points

Figure 12: Bézier control polygon generating the initial shape of the airfoil. Points marked as empty circles signify
control points, the coordinates of which are used as design variables.

The maximization of lift, defined by eq. (8), is chosen as the target of the optimization process.

After ten optimization cycles, the suction side is cambered enough, causing an increase in
the lift coefficient from zero to approximately 0.36, as shown in figs. 13 and 14.

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 0.4

 1 2 3 4 5 6 7 8 9 10

Optimization Cycle

CL

Figure 13: Subsonic flow around the airfoil parameterized as in fig. 12. Adjoint-based optimization for lift maxi-
mization. Lift coefficient evolution during the optimization cycles.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

Initial Airfoil
Optimized Airfoil

Figure 14: Subsonic flow around the airfoil parameterized as in fig. 12. Adjoint-based optimization for lift maxi-
mization. Initial and optimized airfoils.

For the objective function defined in eq. (8) with rk pointing along the y-axis, the imposed
adjoint conditions at the wall can be simplified as Ψn = −ny, where Ψn is the normal adjoint
momentum and ny is the ordinate of the normal unit vector over the airfoil, pointing towards
the solid. Along the pressure side, ny is positive enforcing the adjoint momentum flux to exit
the airfoil. In contrast, along the suction side, ny is negative so the adjoint momentum flux
points to the opposite direction. The aforementioned conditions result in the adjoint momentum
magnitude field presented in fig. 15(b) while the corresponding flow velocity field is shown in
fig. 15(a).

Velocity Magnitude: 20 40 60 80 100 120 140 160 180

(a)
Adjoint Momentum Magnitude: 2 4 6 8 10 12 14 16 18 20

(b)

Figure 15: Subsonic flow around the airfoil parameterized as in fig. 12. Adjoint-based optimization for lift maxi-
mization. (a): Velocity magnitude field and velocity vectors. (b): Adjoint momentum magnitude field and vectors.
Both figures correspond to the optimized geometry.

8 Formulation of the Unsteady Adjoint Method

The unsteady adjoint method is tailored to the flow around of pitching airfoil, with period T .
The objective function to be maximized is defined as

F =
1
T

T∫
0

∫
Sw

pnkrkdSdt (11)

The derivative of F is computed by differentiating the augmented objective function Faug =

F +

T∫
0

∫
Ω

ΨnRndΩdt, where Ψn, n = 1,4 are the unsteady adjoint variable fields. The resulting

unsteady adjoint equations are

−∂Ψm

∂ t
−Anmk

∂Ψn

∂xk
= 0 (12)

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

The imposed boundary conditions along the moving solid wall are Ψk+1nk+Ψ4un,w+
1
T nkrk = 0

and, at the farfield, Ψn = 0, n = 1,4. Then, the gradient of F w.r.t. the design variables bq is

δF
δbq

=
1
T

T∫
0

∫
Sw

p
δ (nkrkdS)

δbq
dt +

T∫
0

∫
Sw

(Ψk+1 p−Ψi fik)
δnk

δbq
dSdt

−
T∫

0

∫
Sw

Ψi
∂ fik

∂xl
nk

δxl

δbq
dSdt +

T∫
0

∫
Sw

Ψi
∂ fil

∂xl

δxk

δbq
nkdSdt

+

T∫
0

∫
Sw

Ψi
∂Ui

∂xl

δxl

δbq
un,wdSdt +

T∫
0

∫
Sw

(ΨiUi + pΨ4)
δun,w

δbq
dSdt (13)

As described in section 4, the grid is dynamically adapted to the motion of the solid boundary.
Due to the fact that the unsteady adjoint equations are solved backwards in time, each and every
adapted grid must be stored. The quad-tree data structure allows for the minimum amount of
data to be kept in memory, i.e. the pair of integers (i, j) (see section 2) and information needed
to transfer values from one grid to the next one, in order to retrieve the proper grid at every
time-step during the unsteady solution. Regarding the adjoint variables’ projection to the grid
at the next time-step, eqs. (6),(7) are used.

9 Unsteady Adjoint Results

An optimization loop is implemented for the pitching airfoil with amplitude 2.5 deg, at fixed
infinite flow conditions of M∞ = 0.44 and a∞ = 0 deg. The optimization aims at maximizing
the lift integral given by eq. (11). Starting from a symmetric airfoil, (fig. 12), where F = 0 and
after ten optimization cycles, the airfoil became cambered and the objective function increased
to almost 0.32 (figs. 16, 17).

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0.3

 0.35

 1 2 3 4 5 6 7 8 9 10

Optimization Cycle

C
−

L

Figure 16: Unsteady subsonic flow around the pitching airfoil parameterized as in fig. 12. Adjoint-based maxi-
mization of the time-averaged lift. Variation in the objective function in terms of the optimization cycles.

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

Initial Airfoil
Optimized Airfoil

Figure 17: Unsteady subsonic flow around the pitching airfoil parameterized as in fig. 12. Adjoint-based maxi-
mization of the time-averaged lift. Initial and optimized airfoils.

Velocity Magnitude: 20 40 60 80 100 120 140 160 180

(a)
Adjoint Momentum Magnitude: 1 2 3 4 5 6 7 8 9 10

(b)

Velocity Magnitude: 20 40 60 80 100 120 140 160

(c)
Adjoint Momentum Magnitude: 1 2 3 4 5 6 7 8 9 10

(d)

Figure 18: Unsteady subsonic flow around the pitching airfoil parameterized as in fig. 12. Adjoint-based maxi-
mization of the time-averaged lift. Flow and adjoint momentum magnitude fields at the two extreme positions of
the optimized airfoil’s oscillation. Vectors represent the velocity and adjoint momentum for flow and adjoint fields,
respectively.

10 Conclusions

The cut-cell method for inviscid flows of compressible fluids and the corresponding continu-
ous adjoint method were developed and programmed on GPUs. These were used in steady and
unsteady analysis and optimization problems. Both steady and unsteady analysis results were
validated against measurements and CFD results obtained using body-fitted grids. A technique
for merging very small cut-cells is employed to avoid numerical instabilities. The Cartesian grid
is adapted to the stationary solid wall boundaries and the emerging flow discontinuities. This
conforms to the quad-tree data structure, ensuring a significant reduction in memory require-
ments. The proposed scheme for transferring the flow and adjoint variables between successive
time steps, in case refinement or coarsening locally applies, proved to be accurate and capable
of supporting unsteady problems. The developed software was used to solve steady and un-
steady lift maximization problems in external aerodynamics but this could be extended to other

K.D. Samouchos, S.G. Katsanoulis and K.C. Giannakoglou

objective functions with minor modifications.

REFERENCES

[1] C.S. Peskin. Flow patterns around heart valves: a numerical method. J. Comp. Phys., 10
(2): 252-271, 1972.

[2] R. Mittal, G. Iaccarino. Immersed boundary methods. Annu. Rev. Fluid Mech., 37 (1):
239-261, 2005.

[3] D.K. Clarke, H. Hassan, M. Salas. Euler calculations for multielement airfoils using Carte-
sian grids. AIAA J., 24 (3): 353-358, 1986.

[4] R. Gaffney Jr., H.A. Hassan. Euler calculations for wings using Cartesian grids. 25th AIAA
Aerospace Sciences Meeting, American Institute of Aeronautics and Astronautics, Reston,
Virginia, 1987.

[5] H. Ji, F. Lien, E. Yee. A new adaptive mesh refinement data structure with an application
to detonation. J. Comp. Phys., 229: 8981-8993, 2010.

[6] D.I. Papadimitriou, K.C. Giannakoglou. Aerodynamic shape optimization using first and
second order adjoint and direct approaches. Arch. Comput. Methods Eng., 15: 447-488,
2008.

[7] J. Hee Seo, R. Mittal. A sharp-interface immersed boundary method with improved mass
conservation and reduced spurious pressure oscillations. J. Comp. Phys., 230 (19): 7347-
7363, 2011.

[8] H. Ji, F. Lien, E. Yee. Numerical simulation of detonation using an adaptive Cartesian cut-
cell method combined with a cell-merging technique. Computers & Fluids, 39: 10411057,
2010.

[9] P. Roe. Approximate Riemann solvers, parameter vectors, and difference schemes. J.
Comp. Phys., 43 (2): 357-372, 1981.

[10] O. Reynolds. Papers on mechanical and physical subjects. Cambridge University Press,
Vol. 3, 1903.

[11] J. Vassberg, A. Jameson. In pursuit of grid convergence for two-dimensional Euler solu-
tions. AIAA J. Aircraft, 47 (4): 1152-1166, 2010.

[12] R. H. Landon. NACA 0012 oscillatory and transient pitching. AGARD Report 702, Dataset
3, January 1982.

[13] I.C. Kampolis, X.S. Trompoukis, V.G. Asouti, K.C. Giannakoglou. CFD-based analysis
and two-level aerodynamic optimization on graphics processing units. Comput. Methods
Appl. Mech. Engrg., 199: 712-722, 2010.

	Introduction
	Grid Generation
	Governing Equations & Discretization
	Dynamic Grid Adaptation
	Validation of the flow solver
	Formulation of the Steady Adjoint Method
	Steady Adjoint Results
	Formulation of the Unsteady Adjoint Method
	Unsteady Adjoint Results
	Conclusions

