
ECCOMAS Congress 2016
VII European Congress on Computational Methods in Applied Sciences and Engineering

M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.)
Crete Island, Greece, 5–10 June 2016

SHAPE OPTIMIZATION OF TURBOMACHINERY ROWS USING A
PARAMETRIC BLADE MODELLER AND THE CONTINUOUS

ADJOINT METHOD RUNNING ON GPUS

K. T. Tsiakas1, F. Gagliardi1, X. S. Trompoukis1, and K. C. Giannakoglou1

1National Technical University of Athens, School of Mech. Eng., Lab. of Thermal Turbomachines,
Parallel CFD & Optimization Unit, Athens, Greece

e-mail: {tsiakost,fl.gagliardi,xeftro}@gmail.com ,kgianna@central.ntua.gr

Keywords: Turbomachines, Blade–Row Parameterization, Adjoint Optimization, GPUs.

Abstract. This paper presents a gradient-based shape optimization method for turbomachinery
rows. The developed continuous adjoint method for incompressible flows, with a fully differ-
entiated turbulence model, is coupled with an in-house 3D blade parameterization software,
which is differentiated to support the gradient-based optimization process. The in-house flow
and adjoint solvers are implemented on a cluster of NVDIA Graphics Processing Units (GPUs).
The parameterization software creates the blade by superimposing thickness on both sides of
the mean-camber surface. The design variables are NURBS coefficients which ensure smooth
shape changes during the optimization, despite the great number of degrees of freedom. In
addition, NURBS surfaces are used to describe the final shape. Geometric sensitivities, which
stand for the ratio of boundary displacements over the corresponding variation in any of the
CAD parameters, are computed by differentiating the parameterization software. Based on the
chain rule these are combined with the gradient of the objective function with respect to (w.r.t.)
the displacements of the blade or casing nodes, as computed by the adjoint method, and used
to update the design variables. During the optimization, the grid is deformed according to
the updated shape of the flow domain; regenerating the grid is avoided, by making use of the
NURBS surface point inversion technique to retrieve the new surface grid and, then, Radial
Basis Functions (RBFs) to propagate the displacement of the boundary nodes to the interior of
the computational grid.

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

1 INTRODUCTION

In recent years, progress in the development of analysis and optimization tools has made
numerical optimization an indispensable component of industrial design processes. In turbo-
machinery, optimization tools must fully be automated, explore a wide design space and permit
the imposition of geometric constraints. Moreover, bringing the geometry back to CAD format
and keeping the computational cost as low as possible are both essential.

Recently, gradient–based methods, supported by the continuous or discrete adjoint for com-
puting the objective function gradient, have become very attractive, mainly because the gradient
can be computed at a cost independent of the number of design variables. The latter makes the
adjoint–based methods suitable for the shape optimization of turbomachinery rows. In CAD–
free methods, the objective function sensitivity derivatives w.r.t. the displacement of the nodes
lying over the wall boundaries (to be referred to as flow sensitivities), computed by the adjoint
solver, are used for modifying the shape of blades and/or casing. In these methods (a) special
care must be taken in order to obtain smooth deformed shapes, and (b) the optimized shape
must be converted into a CAD format for further processing in the industrial workflow. These
issues can be overcome through the use of a parameterization software which is compatible
with standard CAD formats. The objective function (F) gradient w.r.t. the design variables b is
computed as

δF
δb

=
δF
δx

δx

δb
(1)

where δF/δx stands for the flow sensitivities computed by the adjoint solver and δx/δb repre-
sents the sensitivities of the boundary node positions w.r.t. changes in the design variables (also
referred to as geometric sensitivities). In [4], the latter are computed for faceted surfaces by
projecting the perturbed geometry onto the original one and applying finite differences. Other
approaches rely on the deformation of the surface grids using RBFs followed by a finite differ-
ence scheme applied to the resulting and initial grids, [16]. Automatic differentiation of CAD
kernels is under investigation by other researchers but only a few basic functions are supported
yet.

The adaptation of the initial grid to the updated CAD parameterized boundaries is a crucial
component of an automatic optimization loop. This process is often referred as grid morphing.
Two main strategies can be employed. The first one exploits the connectivity of the internal
grid nodes, applying spring analogy [8] or pseudo–elastic solid techniques[9] while, in the
second, each grid node is moved individually by interpolating the surface grid displacement.
RBFs [6],[7] are well established tools used in the second approach, due to their robustness and
compatibility with any kind of grid connectivity, while preserving elements quality.

In this paper, the optimization of a compressor stator for minimizing viscous losses while
penalizing designs which decrease the static pressure rise, is carried out. The blade parameter-
ization software and the computation of geometric sensitivities are presented in Section 2. The
continuous adjoint formulation as well as key features of the GPU–enabled flow and adjoint
solver are presented in Section 3. Grid morphing is incorporated in the optimization loop (fig.
1) as also described in Section 3. Finally, results of the stator row optimization are discussed in
Section 4.

2 BLADE PARAMETERIZATION METHOD

A parameterization/design software for turbomachinery blades is used. The method creates
the row geometry by first parameterizing the shape of the blade’s mean camber surface and,

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 1: Structure of the overall optimization loop

then, adding thickness.
The majority of data given as input to the parameterization software are Non–Uniform Ra-

tional B–Spline (NURBS) curves defining the meridional shape of the row as well as other
geometric distributions in the spanwise direction. The NURBS curves provide flexibility to the
parameterization method, offering also a compact description for a wide range of blade geome-
tries. In order to parameterize axisymmetric geometries, a conformal mapping [3] of a surface
of revolution on the (m–meridional, θ–peripheral) plane is employed.

2.1 Outline of the method

The parameterization process and computation of geometric sensitivities δx
δbi

consists of five
basic steps, as follows:

Step 1: Parameterization of the row generatrices and the meridional shape of the LE and
TE, Fig. 2.

Step 2: Parameterization of the mean–camber surface of the blade.

Step 3: Superposition of thickness distribution on the mean–camber surface to form the
blade shape.

Step 4: Export of the geometry in standard CAD format.

Step 5: Computation of geometric sensitivities.

The first step is the definition of the hub and shroud generatrices via NURBS. In case of a tip
clearance between the blade and the hub or shroud, the generatrix representing the meridional
shape of the blade tip must also be defined. The meridional shape of the blade LE and TE are

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

also defined using NURBS curves. Next step is to generate a number of meridional curves,
equidistant in the spanwise direction, by interpolating the already defined generatrices for the
hub, shroud and blade tip (fig. 2). These curves are used to create surfaces of revolution on
which blade sections are defined.

Figure 2: Meridional shape parameterization. Apart from the LE and TE edge meridional
projections, the hub and shroud generatrices are shown along with the generatrices of a number
of intermediate surfaces of revolution, on which blade sections are defined. Thick lines are
defined as NURBS curves, while the thinner ones result from the interpolation of the hub and
shroud curves.

After defining the surfaces of revolution for all blade sections, the mean–camber surface
is constructed by defining the mean camber line at each section. The mean camber lines are
computed on the (m, θ) plane. Since the mapping (x, y, z) 7→ (m, θ) is conformal, the blade
angles defined on the (m, θ) plane are preserved. The LE and TE of each blade section are
defined by their peripheral position (θLE and θTE , respectively). Then, the blade metal angles
are defined (βLE and βTE , respectively). As shown in fig. 3, the starting and ending–point of
the mean camber line (P0 and P3, respectively) of each blade section and the point P̃ where
the two tangents intersect are defined. The remaining two control points are located using two
non-dimensional weights ζLE and ζTE , as follows:

P1 = ζLEP0 + (1− ζLE)P̃

P2 = ζTEP3 + (1− ζTE)P̃
(2)

In order to compactly define the θ, β and ζ for the leading and trailing edge and also achieve
a smooth geometry, their distributions in the spanwise direction are specified as NURBS curves.

Thicknesses tPS and tSS for the pressure and the suction side, respectively, might be differ-
ent. To add flexibility they are defined in two steps. First, the normalized thickness (t̂) profiles
w.r.t. the normalized arc–length of the mean camber line (s) are defined at some spanwise
positions. For any other blade section, (̃t̂) is interpolated. Then, a spanwise distribution for
the thickness factor (tf), that scales the pre-computed profile, is specified. By doing so, the
thickness corresponding to a point at distance s along the mean camber line positioned at a
normalized spanwise position (η) is given as t(η, s) = ˜̂t(s, η) tf (η). Having drawn the mean
camber line for each blade section on the (m, θ) plane, the normal vector is computed. The two
sides of each airfoil are then formed by defining points in the normal direction at a distance
specified by the computed thickness distributions scaled as follows

cmθ(η, s) = µmθ(η, s)± nmθ(η, s)
t(η, s)

r2(m(η, s))
(3)

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

θ

m

P0

P1

P2

P3

~
P

�LE

�TE

m

Figure 3: Definition of the mean camber line on the (m, θ) plane. The βLE and βTE angles as
well as the curvature of the mean camber line is preserved when mapped back on a surface of
revolution, in the 3D Cartesian space.

where c represents the point on the airfoil in the (m, θ) plane, µ the corresponding point on
the mean–camber line and n the vector normal to the mean–camber line. The resulting blade
airfoils on the (m, θ) plane are mapped back onto the 3D Cartesian coordinates to yield the final
blade shape.

The parameterization software can export the geometry in neutral CAD format (IGES) for vi-
sualization and grid generation purposes. IGES format supports many different entities, among
which free–form surfaces in the form of NURBS surfaces that can be used to describe the skin
of 3D models.

In the 3D Cartesian space, airfoils are spanwise interpolated through NURBS curves and a
skinning algorithm is used to construct the NURBS surface describing the blade; skinning is
the process of passing a smooth surface through a set of cross-sectional curves (airfoils). This
method requires all cross-sectional NURBS curves to be compatible (equal knot-vector and
degree) and can, thus, cause data explosion [5]. Controlling the parameterization of the blade
airfoils to have natively compatible cross-sectional curves overcomes this problem.

Hub and shroud surfaces are easily generated as surfaces of revolution based on generatrices
and the pitch angle. Similar to the blades themselves, periodic surfaces are generated through
skinning. The inlet and outlet boundaries are generated as Coons patches through bilinear
blending [15].

Finally, hub and shroud surfaces must be trimmed: in order to avoid numerical instabilities
the blade sides are extended. An extension algorithm is applied to the NURBS blade surface
[10], as shown in Fig. 4.

Flow sensitivities (δF
δx

) are computed by the continuous adjoint method for the nodal coor-
dinates of the CFD surface grid. To close the chain rule of eq. 1, geometric sensitivities are
needed. Making use of the NURBS representation of the geometry and finite differences, these
sensitivities are computed directly on the CFD grid.

Starting from an initial parameterization, the software module perturbs each appropriate de-
sign variable and calls the parameterization process, computing the corresponding NURBS sur-
faces. Surface mesh nodes are inverted onto the NURBS parametric space and, for each surface
node, parametric coordinates become available. These parametric coordinates can be used to
compute each surface node in the original or any perturbed geometry. Finite differences are
applied to the computed nodes. In order to avoid the propagation of numerical errors, intro-

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 4: 3D view of the blade extension and the trimming of the blade and shroud surfaces
(left). Geometric sensitivities of the blade w.r.t. βLE (fig. 3) at shroud. Contours represent
the geometric sensitivities in the normal direction δx

δb
n : red denotes inwards (towards the solid)

displacement, whereas blue outwards. Arrows represent the actual geometric sensitivities δx
δb

(right).

duced by the point inversion algorithm, to the computation of the geometric sensitivities, nodes
in the original geometry are recomputed through their parametric coordinates. An application
is shown in fig. 4.

3 ADJOINT–BASED SHAPE OPTIMIZATION AND GRID DISPLACEMENT

3.1 Flow Model

The flow model is based on the Navier–Stokes equations for incompressible flows, using the
pseudo–compressibility approach introduced by Chorin [1]. By introducing the pseudo–time t
the flow equations are expressed as

Rn =
∂Un
∂t

+
∂f invnk

∂xk
− ∂f visnk

∂xk
= 0 (4)

where n = 1, . . . , 4 and Un = [p v1 v2 v3], with p denoting the static pressure divided by the
constant density of the fluid and vk (k = 1, . . . , 3) the components of the fluid velocity. The
inviscid (f invnk) and viscous (f visnk) fluxes, in the Cartesian frame, are expressed as

f invk =

βvk

vkv1 + pδ1k

vkv2 + pδ2k

vkv3 + pδ3k

 , f visk =

0
τ1k

τ2k

τ3k

 , τmk = (ν + νt)

(
∂vk
∂xm

+
∂vm
∂xk

)
(5)

where β stands for the pseudo–compressibility parameter, ν and νt the kinematic and turbulent
viscosity respectively, δij is the Kronecker symbol and τkm denotes stresses. The turbulent
viscosity is computed using the Spalart–Allmaras turbulence model by solving one additional
PDE (Rν̃) for the turbulence variable ν̃, as in [2].

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

3.2 Continuous Adjoint for Aerodynamic Shape Optimization

The first objective is to minimize the volume–averaged total pressure (pt) losses of the flow
through a stationary row. Without any loss in generality, this paper is dealing only with station-
ary bladings, though the programmed software may also handle rotating bladings by switching
to a rotating reference frame. The first function to be minimized is expressed as

f1 = −
∫
SI

ptvknkdS −
∫
SO

ptvknkdS (6)

where SI is the stator inlet and SO the stator outlet. The second objective, practically, is used
to penalize designs which decrease the static pressure rise. This gives the second objective
function (being a negative quantity for compressor blading)

f2 = −
∫
SI

pvknkdS −
∫
SO

pvknkdS (7)

The same method could also be used for the optimization of rotating rows, with the first objec-
tive being the minimization of the relative total pressure ptR between inlet and outlet.

The problem, given by eqs. 6 and 7 can be reformulated as a single one by minimizing ,

F = ω1f1 + ω2f2 (8)

where ω1 and ω2 are appropriate positive user–defined weights. To make the cost of computing
δF
δbi

independent of the number of design variables, the adjoint method is employed. For a
function I (which stands for either f1 or f2), the adjoint formulation starts by defining the
augmented function

Iaug = I +

∫
Ω

ΨnRndΩ +

∫
Ω

ν̃aRν̃dΩ (9)

where Ψn are the adjoint mean flow variable fields and ν̃a the adjoint to turbulence variable ν̃.
By differentiating eq.9 and applying the Leibniz theorem, we have

δIaug
δbi

=
δI
δbi

+

∫
Ω

Ψn
∂Rn

∂bi
dΩ +

∫
Ω

ν̃a
∂Rν̃

∂bi
dΩ +

∫
S

ΨnRn
δxk
δbi

nkdS +

∫
S

ν̃aRν̃
δxk
δbi

nkdS (10)

Using the Green–Gauss theorem, the volume integrals of eq. 10 are transformed into (a) volume
integrals containing ∂Un

∂bi
and ∂ν̃

∂bi
, (b) surface integrals containing δUn

δbi
and δν̃

δbi
and (c) surface

integrals containing δxk
δbi

. Similarly, δI
δbi

results in surface integrals containing δUn

δbi
and δν̃

δbi
.

By eliminating all integrals containing ∂Un

∂bi
, [18], the adjoint to eqs. 4, are derived. These are

∂Ψ1

∂t
−∂Ψk+1

∂xk
= 0

∂Ψm+1

∂t
−vk

(
∂Ψk+1

∂xm
+ ∂Ψm+1

∂xk

)
− ∂τadjmk

∂xk
− ν̃ ∂ν̃a

∂xm
+ T TMm = 0, m = 1, . . . , 3

(11)

where the adjoint stresses are given as τadjkm = (ν + νt)
(
∂Ψm+1

∂xk
+ ∂Ψk+1

∂xm

)
and T TM stands for

terms resulting from the differentiation of the turbulence model. Similarly, eliminating volume
integrals containing ∂ν̃

∂bi
results to the adjoint to the turbulence model equation, [17]. Eliminating

the corresponding surface integrals gives rise to the adjoint boundary conditions: the remaining

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

terms give the final expression of the gradient. The expression of the gradient of I w.r.t. the
coordinates of all surface nodes is

δI
δxk

=−
∫
Sw

βΨ1nm
∂vm
∂x`

δx`
δxk

dS +

∫
Sw

Ψm+1nq
∂τqm
∂x`

δx`
δxk

dS −
∫
Sw

τadjmq nq
∂vm
∂x`

δx`
δxk

dS (12)

Since the inlet and outlet boundaries remain unchanged during the optimization, δxk
δbi

= 0 along
SI and SO.

3.3 Numerical Solution of the Flow and Adjoint Equations on GPUs

The primal and adjoint solvers use the vertex-centered variant of the finite volume method on
unstructured/hybrid meshes. Both solvers are implemented on NVIDIA GPUs using CUDA-C,
taking advantage of the great parallel speed–up they offer. Some comments on the discretization
and numerical solution techniques used as well as their implementation on GPUs follow.

The primal inviscid fluxes are computed using the Roe’s approximate Riemann solver [11]
adapted to incompressible flows. Adjoint fluxes are computed in a similar way, by considering
the non-conservative form of the field adjoint equations. The spatial discretization of the in-
viscid fluxes is second–order accurate, with appropriate flux limiters, if necessary. Both primal
and adjoint viscous fluxes are computed using an edge–based central difference scheme. The
discretized equations are solved in each pseudo-time step using a point–implicit Jacobi iterative
scheme.

Modern GPUs are massively parallel co-processors to CPUs offering at least an order of
magnitude more FLOPS and higher memory bandwidth than CPUs. However, due to the dif-
ferent architecture, software directly ported from CPUs to GPUs cannot efficiently exploit the
available GPU computational resources. The authors group has developed a flow and adjoint
solver that is capable of running on many GPUs belonging to the same or different computa-
tional nodes with a parallel speed–up of up to 45x compared to the CPU implementation of the
same code. This parallel speed–up results from a) the optimization of memory access patterns
for the used GPU architecture [14], b) the use of GPU specific scatter–adding techniques [13]
c) the minimization of the communication overhead when using many GPUs, by simultaneous
data transfers and computations.

Another important feature of the flow and adjoint solver is the use of Mixed–Precision Arith-
metics(MPA); the interested reader could find more about MPA in [12]. In order to reduce
memory footprint and number of memory accesses, in MPA, the LHS terms are computed in
Double–Precision Arithmetics (DPA) and stored using Single–Precision Arithmetics (SPA). Of
course, the RHS terms are still stored using double–precision, so as to maintain the accuracy of
a purely DPA scheme.

3.4 Grid Displacement using RBF

With the RBF model the deformation is treated as a scattered data interpolation where surface
node displacements are smoothly interpolated at the internal nodes. The new surface grid,
which corresponds to the new geometry, is obtained by inverting [15] and displacing nodes in
the NURBS parametric space (u, v). Special care is taken in case of trimmed surfaces. An
application is shown in fig. 5.

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 5: Example of the use of the RBF-based grid displacement method showing the initial
(left) and displaced at cycle 4 (right) shroud surface mesh. All boundary nodes are displaced
into the NURBS parametric space and, then, transformed back to the Cartesian space.

4 APPLICATION TO A LOW–SPEED COMPRESSOR STATOR

The test case concerns the optimization of the stationary row of a low–speed compressor. The
objective is to minimize the volume averaged total pressure losses between the inlet and outlet
of the CFD domain penalizing designs which decrease the volume averaged static pressure rise.
The weights used in the objective function 8 are ω1 = 0.9 and ω2 = 0.1. The inlet flow angle
is 46◦ w.r.t. the axial direction and Re = 6.5×105 based on the blade axial chord–length (cax).
The initial blade is formed by the spanwise extrusion of the same airfoil and trimming with the
cylindrical hub and shroud.

The total number of design variables used to carry out the optimization is 40; note that 32
out of the 40 variables are used to control the blade thickness distribution. In fig. 6, the initial
distribution of the thickness is reported along with the NURBS control polygon; control points
are allowed to vary only in one direction. In order to maintain C0 continuity, at the trailing and
leading edge, the first and last control point are kept fixed.

The metal angles βLE and βTE and parameters ζLE and ζTE are used to control the blade
camber at the hub and shroud positions. Only two span positions are used to describe the
distribution of these geometric characteristics. A graphical representation is shown in fig. 6,
together with a 3D view of the stator to be optimized. The hub and shroud generatrices remain
frozen.

The optimization run on a single computation node with two 6-core Intel(R) Xeon(R) CPU
E5-2620 v2 @ 2.10GHz processors and two NVIDIA Tesla K40 GPUs with 12GB of GPU
memory. The computational grid consists of ~1.9×106 nodes and is carefully stretched close to
the solid walls, where the non-dimensional distance of the first grid nodes off the wall is y+≈1.
The solution of the flow field runs for ~17min while ~12min are needed for the solution of the
adjoint equations per optimization cycle.

The optimization history as well as both the initial and optimized shapes, are shown in fig. 7.
To compare the flow fields around the initial and optimized geometries 4 stations/positions

in the axial direction are chosen as shown in fig. 8. In figs. 9 to 10, the flow fields around the
initial and the optimized blade geometries are compared.

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 6: Parameterization of the β angles at LE and TE for hub and shroud position (left). The
normalized thickness profile distributions are defined as NURBS curves (right). The control
points of the NURBS curves are used as design variables: displacements in the y direction
(defining the non–dimensionalized thickness) are safely allowed.

Figure 7: Comparison of the initial (blue) and the optimized (red) blade shape (left). Conver-
gence history for f1 and f2 during the optimization (right). Both absolute convergence history
(right–top) and relative convergence history (right–bottom) are reported. Both pt and p are
non–dimensionalized by (V in)2.

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 8: Axial positions chosen to compare the flow fields around the initial and optimized
geometry.

Figure 9: Peripheral velocity component field at axial positions from 1 (left) to 4 (right) for
the initial (top) and the optimized (bottom) geometry. The peripheral velocity component is
non-dimensionalized by V in.

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

Figure 10: Loss coefficient (pint − pt) field at axial positions from 1 (left) to 4 (right) for the
initial (top) and the optimized (bottom) geometry. The total pressure is non-dimensionalized by
(V in)2.

5 CONCLUSIONS

A method for the optimization of turbomachinery rows, by coupling the adjoint–based opti-
mization process with a parametric blade modeller was presented. This enables the exploration
of the design space while maintaining a CAD representation. The use of the (continuous) ad-
joint method makes the cost of computing the objective function gradient independent of the
number of design variables. Moreover, the optimization wall–clock time is further reduced by
implementing the flow and adjoint solvers on GPUs, speeding–up the corresponding processes
by ~45x, compared to the use of CPUs. Regenerating the CFD grid for each new geometry was
overcome by using a grid displacement technique based on RBFs. The reduced cost, combined
with the capability of linking to CAD, makes the proposed method appropriate for the industrial
design workflow.

6 ACKNOWLEDGEMENT

This research was funded from the People Programme (ITN Marie Curie Actions) of the
European Union’s H2020 Framework Programme (MSCA-ITN-2014-ETN) under REA Grant
Agreement no. 642959 (IODA project). The second author is an IODA Early Stage Researcher.

REFERENCES

[1] A. Chorin, A numerical method for solving incompressible viscous flow problems. Jour-
nal of Computational Physics, 2-1, 12–26, 1967.

[2] P. Spalart, S. Allmaras, A one–equation turbulence model for aerodynamic flows. La
Recherche Aérospatiale, 1, 5–21, 1994.

[3] M. Rossgatterer, B. Jüttler, M. Kapl, G. Della Vecchia, Medial design of blades for hydro-
electric turbines and ship propellers. Computers & Graphics, 36, 434–444, 2012.

K. T. Tsiakas, F. Gagliardi, X. S. Trompoukis and K. C. Giannakoglou

[4] T.T. Robinson, C. G. Armstrong, H. S. Chua, Carsten Othmer, T. Grahs, Optimizing pa-
rameterized CAD geometries using sensitivities based on adjoint functions. Computer-
Aided Design & Applications, 9(3), 363–268, 2012.

[5] L. Piegl, W. Tiller, Algorithm for approximate NURBS skinning. Computer-Aided Design,
9(28), 699–706, 1996.

[6] M. Buhmann, Radial basis functions: theory and implementations. Cambridge University
Press, Cambridge, 2003.

[7] D. Sieger, S. Menzel, M. Botsch, High quality mesh morphing using triharmonic radial
basis functions. Proceedings of the 21st International Meshing Roundtable, 1–15, 2013.

[8] S. Zhu, A semi-torsional spring analogy model for updating unstructured meshes in 3D
moving domains. Finite Elements in Analysis and Design, 41, 1118–1139, 2005.

[9] Z. Xu, M. Accorsi, Finite element mesh update methods for fluid structure interaction
simulations. Finite Elements in Analysis and Design, 40, 1259–1269, 2004.

[10] S.M. Hu, C.L. Tai, S.H. Zhang, An extension algorithm for B-splines by curve unclamp-
ing. Computer Aided Design, 34, 415–419, 2002.

[11] P. Roe, Approximate Riemann solvers, parameter vectors, and difference schemes. Journal
of Computational Physics, 43(2), 357–372, 1981.

[12] I. C. Kampolis, X. S. Trompoukis, V. G. Asouti, K. C. Giannakoglou, CFD–based anal-
ysis and two–level aerodynamic optimization on Graphics Processing Units. Computer
Methods in Applied Mechanics and Engineering, 199(9-12), 712–722, 2010.

[13] V. G. Asouti, X. S. Trompoukis, I. C. Kampolis, K. C. Giannakoglou, Unsteady CFD com-
putations using vertex–centered finite volumes for unstructured grids on Graphics Process-
ing Units. International Journal for Numerical Methods in Fluids, 67(2), 232–246, 2011.

[14] X. S. Trompoukis, V. G. Asouti, I. C. Kampolis, K. C. Giannakoglou, CUDA implemen-
tation of vertex–centered, finite volume CFD methods on unstructured grids with flow
control applications. GPU Computing Gems, Jade Edition, 2011.

[15] L. Piegl, W. Tiller, The NURBS book. Springer, 2013.

[16] A. Ronzheimer, Aircraft geometry parameterization with high-end CAD-software for de-
sign optimization. Proceedings ECCOMAS 2012, Vienna, Austria, 2012.

[17] E. M. Papoutsis-Kiachagias, K. C. Giannakoglou, Continuous adjoint methods for turbu-
lent flows, applied to shape and topology optimization: Industrial applications. Archives
of Computational Methods in Engineering. Springer, 2016.

[18] K. T. Tsiakas, X. S. Trompoukis, V. G. Asouti, K. C. Giannakoglou, Shape optimization
of wind turbine blades using the continous adjoint method and volumetric NURBS on a
GPU cluster. Proceedings of EUROGEN 2015, Glasgow, UK, 2015.

	INTRODUCTION
	BLADE PARAMETERIZATION METHOD
	Outline of the method

	ADJOINT–BASED SHAPE OPTIMIZATION AND GRID DISPLACEMENT
	Flow Model
	Continuous Adjoint for Aerodynamic Shape Optimization
	Numerical Solution of the Flow and Adjoint Equations on GPUs
	Grid Displacement using RBF

	APPLICATION TO A LOW–SPEED COMPRESSOR STATOR
	CONCLUSIONS
	ACKNOWLEDGEMENT

