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Summary:

Research activities at the Parallel CFD & Optimization Unit of NTUA (PCOpt/NTUA) in-
clude the development of adjoint-based methods for solving aero- and hydrodynamic shape and
topology optimization problems. Recent achievements in the development of continuous adjoint
methods are overviewed, prior to illustrating some industrial applications. Without loss in gener-
ality, all developments are demonstrated for the incompressible �ow model and all computations
performed within OpenFOAM R©.

Up to recently, regarding the mathematical formulation of continuous adjoint methods, two
di�erent approaches were available. The �rst one expresses the gradient in terms of only bound-
ary/surface integrals, is computationally cheap but, depending on the case, may compute inexact
gradients on inadequately stretched grids. The second one expresses the gradient in terms of
both surface and �eld integrals, is very accurate, though computationally much more expensive.
To bridge the gap between them, a new enhanced formulation [5] assisted by the adjoint to a
grid displacement model is showcased. The new formulation is both accurate and cheap as it is
free of volume integrals

In addition, the development of the continuous adjoint method for problems governed by
the Reynolds-Averaged Navier-Stokes (RANS) equations, assisted by a PDE-based turbulence
model, is presented. The majority of continuous adjoint methods make the assumption of "frozen
turbulence", i.e. they refrain from di�erentiating the turbulence model PDEs and this might
become a source of inaccuracies, sometimes even leading to wrongly signed sensitivity derivatives.
The di�erentiation of the most frequently used turbulence models (Spalart�Allmaras [13] also
with the use of wall functions [14], k-ε [12] and k-ω SST [4]) as part of the adjoint method
formulation, along with the resulting bene�ts are brie�y discussed and demonstrated.

Over and above to the few examples presented to convince the reader about the need to use
the above formulations, some cases related to the use of shape and topology optimization for
automotive applications follow [10].

1 Continuous Adjoint Formulations for Shape Optimization

The derivation of the adjoint equations, their corresponding boundary conditions and the sensi-
tivity derivative (SD) expression, concerning a laminar �ow governed by the steady incompress-



ible Navier-Stokes, starts by de�ning the augmented objective function
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∫
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uiR
v
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∫
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qRpdΩ (1)

where bn, n= 1, ..., N are the design variables and J is the objective function. Assuming that
J is de�ned only along the boundary S of the �ow domain Ω, a general way to present it is in
the form J=

∫
S
JS,inidS=

∫
SW
JSW ,inidS+

∫
SO
JSO,inidS where S=SW ∪ SO, SW is the controlled

solid wall, SO any other boundary of Ω and ni the outward unit normal vector to S. Apart
from J , L includes also the integrals of the residuals of the momentum (Rv

i =0) and continuity
(Rp=0) equations multiplied by the �elds of the adjoint velocities ui and the adjoint pressure q.
A literature survey shows that the continuous adjoint method can be formulated in two di�erent
ways, which both give the same adjoint �eld equations and boundary conditions, yet di�erent
expressions for the gradient of J with respect to (w.r.t.) bn. Recently, a new formulation, [5],
which combines the advantages of both, has been developed by PCopt/NTUA.

The �rst published formulation, leads to gradient expressions with �eld integrals (FI) includ-

ing the variations in the spatial coordinates ~x w.r.t. ~b, a.k.a. grid sensitivities. The standard way
to compute δ~x/δ~b is through �nite di�erences (FD) at a cost that scales linearly with the number
of design variables. To set-up the FI formulation, one should start by the total derivative of L,
i.e.
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where, the last term vanishes since Rv
i = Rp = 0 in Ω. By developing the total derivatives

of Rv
i and Rp w.r.t. bn, the corresponding derivatives of p, vi, τij w.r.t. bn (where τij are the

components of the stress tensor) and their spatial derivatives appear. By applying the chain

rule, the formula δ
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and the Green-Gauss theorem, integrals of

expressions multiplied by δvi/δbn and δp/δbn arise. By zeroing those expressions in the volume
integrals of δL/δbn the �eld adjoint equations are derived, [10]. The adjoint boundary conditions
are derived by zeroing the expressions multiplying by δp/δbn, δvi/δbn and δτij/δbn in the surface
integrals of δL/δbn. The remaining terms in δL/δbn yield the SD expression which reads
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and τaij are the components of the adjoint stress tensor.
Since, in the FI adjoint formulation, φ=0, the expression for W (φ) is, in fact, quite simpler

than that given by eq. 4 which was kept as general as possible so as to �t to all the adjoint



formulations discussed in section 1. In eq. 3, tIi , t
II
i are the components of the tangential to the

surface unit vectors (in 3D shapes).
The SI which is often referred to as the "reduced-gradient" adjoint formulation [3], was

developed later on and proved to be an attractive improvement. The SI adjoint formulation is
based on the application of the Leibniz theorem for integral variations, namely
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The last integral in eq. 5 is usually ignored, [9], by making the (debatable) assumption that the
�ow PDEs are satis�ed along the boundary.

The SI formulation (i.e. the severed form of eq. 5) in shape optimization problems in �uid
mechanics, governed by the same state equations as before, leads to the following SD expression
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Before proceeding to the new-third formulation and for better understanding its merits, the
two formulations are compared. In eq. 3, one should notice the presence of the �eld integral
containing the spatial gradient of the grid sensitivities which is the main di�erence between the
FI and SI adjoint formulations. Their computation by �nite di�erences (FD) is expensive for a
large number of design variables. As a result, the SI formulation is, by far, less expensive than the
FI formulation in problems with many design variables and, thus, preferred. However, because
of the elimination of last integral in eq. 5, the accuracy of the SI formulation is not guaranteed.
In contrast, the FI formulation provides accurate SD. To the authors knowledge, there is no
other paper on continuous adjoint for turbulent �ows dealing with the accuracy-problem of the
SI formulation. Only a couple of them, [1, 8], refer to this problem in laminar and inviscid �ows,
without providing a solution at least based on a purely continuous approach.

The E-SI (Enhanced-SI adjoint) formulation, as �rstly proposed in [5], intends to alleviate
the accuracy issue of the SI formulation, while having almost the same computational cost. In
other words, the E-SI combines the main advantages of the FI and SI formulations. In the
E-SI formulation, in order to avoid the computation of δxk/δbn at the internal nodes, the adjoint
formulation is extended by considering grid displacement PDEs as extra governing equations, i.e.
extra constraints. Without loss in generality, we make the assumption that grid displacement (in
fact, the adaptation to the varying boundaries of the domain) is performed by solving Laplace

equations. These read Rm
i = ∂2mi

∂x2j
= 0 and, as extra constraints in the form of

∫
Ω
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m
i dΩ,

should be added to the RHS of eq. 1. Here, mi (i = 1, 2(, 3)) are the Cartesian displacements of
grid nodes and ma

i is the adjoint to mi. In order to eliminate the �eld integrals in δL/δbn, which
include δxk/δbn, the adjoint grid displacement PDEs
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should be satis�ed in addition to the adjoint mean�ow (and turbulence model) PDEs (see section
2). Therefore, in E-SI, the gradient of J becomes
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including solely boundary integrals. The extra cost of computing the gradient of J using eq. 8,
instead of eq. 6, which accounts for the numerical solution of the adjoint grid displacement



equations, is negligible compared to that of solving the primal and adjoint PDEs. The two
major advantages of the SI formulation are valid in E-SI too: (a) cost-independence from the
number of design variables and (b) gradient computations based on surface integrals only. Note
that, for the chosen grid displacement model, the solution of the (primal) grid displacement
PDEs is not needed, yet only its adjoint equation must be solved after the solution of the adjoint
to the �ow model PDEs.

In �gs. 1 and 2, the sensitivity derivatives computed by the three di�erent adjoint formu-
lations are compared in a laminar and a turbulent �ow problem. The �rst case deals with the
computation of the lift and drag SD of an isolated airfoil. The second case deals with the com-
putation of the lift SD for the �ow around an isolated airfoil at turbulent �ow conditions. In
both cases, the accuracy of the E-SI formulation in comparison with the less expensive and less
accurate SI and the accurate though expensive FI is noticeable.

Figure 1: Laminar �ow around an isolated airfoil designed for low drag at its 'nominal' operating
point; however, here, this is studied at laminar �ow conditions (Re=600, ainf =3o): Comparison
of the SD computed by the FI, SI, E-SI and FD methods for lift (left) and drag (right). SD are
computed w.r.t. the x (�rst half points in the abscissa) and y (second half) coordinates of 24
NURBS control points parameterizing the pressure and suction sides. A C-type structured grid
with 45000 cells is used. For the lift, all the adjoint formulations practically match the outcome
of the FD. This is not, however, the case for the drag since the SI approach computes SD which
deviate substantially from the FD whereas the FI and E-SI are in perfect agreement.

2 Continuous Adjoint to the Turbulence Model PDEs

In the literature of continuous adjoint, to compute the gradient of objective functions in turbulent
�ows governed by the RANS, it is common to neglect variations in the turbulent viscosity, by
assuming that changes in the shape of the aerodynamic body a�ect only the mean �ow quantities.
This is referred to as the "frozen turbulence" assumption and leads to a system of adjoint
equations which doesn't include the adjoint to the turbulence model PDEs. The so-computed
SD are occasionally wrongly signed and this may seriously a�ect the descent process. A much
more rigorous approach includes the di�erentiation of the turbulence model equation(s) w.r.t. the
design variables and requires the formulation and solution of the adjoint to the turbulence model
PDEs. At NTUA, the (continuous) adjoint PDEs for three turbulence models, namely the
Spalart�Allmaras [13], k-ε [12] and k-ω SST [4] models have been developed.

Assuming, for instance, that closure is a�ected by the one-equation Spalart-Allmaras model
the development of the adjoint SI formulation starts by adding

∫
Ω
ν̃aR

ν̃dΩ to the RHS of eq. 1
where ν̃a is the adjoint to the model variable ν̃ and Rν̃ is the residual of the Spalart-Allmaras
equation. In the Launder�Sharma k−ε or the k-ω SST models, this new integral must be replaced



Figure 2: Turbulent �ow around the NACA0012 airfoil (Re= 106, ainf = 3o, average y+ = 0.2):
Comparison of the lift SD computed by the FI, SI, E-SI and FD methods. Similar shape param-
eterization as in 1. The SI results have been divided by 10 in order to be on the same scale with
those of the other methods. All adjoint variants presented include the complete di�erentiation
of the turbulence model, see section 2. Despite the fact that the grid is adequately stretched for
RANS computations based on low-Reynolds number turbulence models, the SI−based SD di�er
considerably from the FI ones or the FD and have the wrong sign for almost all design variables.
In contrast, the E-SI approach computes the reference SD values, without the extra cost of the
FI approach.

by
∫

Ω
kaR

kdΩ +
∫
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εaR

εdΩ or
∫
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kdΩ +
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ωdΩ respectively, where the computation of
the new adjoint �elds requires the formulation and solution of extra PDEs. After zeroing the
multipliers of δp/δbn, δvi/δbn and δν̃/δbn (for the Spalart-Allmaras model), the adjoint PDEs
arise. In the absence of �eld integrals in J, the system of the adjoint PDEs, for the Spalart-
Allmaras model, becomes

Rq=−∂uj
∂xj

= 0 (9)

Ru
i =uj

∂vj
∂xi
− ∂(vjui)

∂xj
− ∂

∂xj

[
(ν+νt)

(
∂ui
∂xj

+
∂uj
∂xi

)]
+
∂q

∂xi
+AMSi=0 , i=1, 2(, 3) (10)

Rν̃a =−∂(vj ν̃a)

∂xj
− ∂

∂xj

[(
ν+ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj
+ 2

cb2
σ

∂

∂xj

(
ν̃a
∂ν̃

∂xj

)
+ ν̃aν̃Cν̃

+
∂νt
∂ν̃

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+ (−P (ν̃)+D(ν̃)) ν̃a=0 (11)

where P (ν̃) and D(ν̃) are the production and dissipation terms of the model; among other,
D(ν̃) depends on the distance ∆ from the wall. The extra terms AMSi in eq. 10 arise from the
di�erentiation of the turbulence model [13, 10] and would not exist if the "frozen turbulence"
assumption was made; these terms quantify the e�ect of the adjoint turbulence on the adjoint
mean-�ow equations. The adjoint boundary conditions are derived by properly treating the
boundary integrals that depend on the variations in the �ow variables. After satisfying the �eld
adjoint equations and boundary conditions, δJ/δbn becomes
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that, without loss in generality, the SI adjoint formulation has been adopted. To account for
the di�erentiation of the distance ∆ from the wall, i.e. to take into consideration δ∆/δbn,

the Hamilton-Jacobi equation (R∆ =
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dS. A convincing example demonstrating the need of solving

the adjoint turbulence model equations can be found in �g. 3.

Figure 3: Turbulent �ow around a NACA4412 isolated airfoil (Re=1.5× 106, ainf =0o). A grid
with 60000 cells is used, with an average y+ value of the �rst cell centers o� the wall of 0.03.
Adjoint to the low-Re Spalart�Allmaras model: Left: velocity magnitude �eld. A volumetric B-
Splines morpher is used to parameterize the airfoil. The structured control grid of the morpher is
plotted on top of the airfoil, along with the ID of each control point. The blue control points are
kept �xed and only the red ones are allowed to vary. Right: drag SD w.r.t. the y displacements of
the control points. Three SD distributions are compared by solving the complete adjoint approach
(marked as �turbulent adjoint�), by making the �frozen turbulence� assumption and by FD. The
abscissa stands for the control point IDs. By making the �frozen turbulence� assumption, wrongly
signed SD are computed for the control points 43 to 45 and 61 to 64.

Since, in the industry there is a need to use less stretched grids than those required by
the low-Re turbulence models, the development of the continuous adjoint method to turbulence
models which use wall functions on coarser meshes and the law of the wall appears to be of value.
The adjoint to three models supported by wall functions, namely the k-ε [15], Spalart-Allmaras
[10] and k-ω SST ones has been developed and tested. This has led to the adjoint equations and
boundary conditions expressed in terms of the adjoint to the friction velocity which is used to
bridge the gap between the solid wall and the �rst grid node o� the wall.

3 Automotive Applications

In this section, two automotive applications are presented. In the �rst one, the drag minimization
of one DrivAer car model con�guration, developed by the Institute of Aerodynamics and Fluid
Mechanics of TU Munich, is demonstrated in �gs 4, 5 and 6 with description and comments in
the captions. The Spalart-Allmaras model with wall functions was used to e�ect closure; the
computational grid consists of about 3.8 million cells. The second case is concerned with the VW
Polo passenger car. Using the DES variant of the Spalart-Allmaras turbulence model with wall
functions, the minimization of two objective functions (total and rear lift) is separately studied
and the computed sensitivity maps (considered as the roadmap to the optimal solutions) are
presented, leading to a very interesting comparison of trends, see �g. 7.



Figure 4: DrivAer car (fast-back con�guration with smooth underbody, with mirrors and wheels)
shape optimization for drag minimization: Six design parameters are used to morph six di�erent
parts of the car, by distinctly controlling: the boat tail (top-left), the car height (top-middle), the
front bumper (top-right), the rear bumper (bottom-left), the shape of the mirror (bottom-middle),
the shape of the rear window (bottom-right). In color, one may see δxk/δbn.

4 Adjoint Methods for Topology Optimization

Continuous adjoint methods for solving topology optimization problems for laminar and turbu-
lent ducted �ows of incompressible �uids, with or without heat transfer, have been developed,
[7, 11]. For turbulent �ows, the adjoint approach includes the di�erentiation of the turbulence
model, as already discussed in section 2. In cases where geometries with more than one outlet
channels are studied, constraints on (a) the percentage of the incoming �ow rate, (b) the swirl
and (c) the temperature distribution at each exit boundary can optionally be imposed.

In �g. 8, the optimization of an air-conditioning duct, transferring air from the main console
to the back seats of a passenger car is investigated, targeting minimum total pressure losses. The
case is part of the E.C. project �Flowhead� and was provided by Volkswagen AG. The �ow is
modeled using the Spalart�Allmaras model with wall functions. The optimization led to a 45%
decrease in total pressure losses.

In order to maintain an explicit description of the solid-�uid interface, the topology optimiza-
tion process is enhanced using the level set method. This also helps preventing the formation of
undesirable �uid or solid islands.

Figure 5: DrivAer car shape optimization for drag minimization: initial (starboard side) and
optimized (port side) car geometries, coloured based on the cumulative deformation of the car
surface after 15 optimization cycles. The areas with the highest deformation are those a�ected
by the boat-tail and rear-windshield shape design parameters.



Figure 6: DrivAer car shape optimization for drag minimization: Left: Evolution of the normal-
ized drag in terms of the number of iterations of the �ow solver, following the FI and SI adjoint
formulations. In each optimization cycle, the �ow solver runs for 1000 iterations (since a previ-
ously �converged� solution was used to initialize the optimization; in the �rst optimization cycle,
the stopping criterion was set to 500 iterations). Kinks in the objective function value indicate
the �rst iterations after each shape update. With the FI formulation, a drag reduction by 7%
was achieved whereas the SI gave no more than 1.5% reduction. Right: initial (starboard) and
optimized (port) (with the FI formulation) geometries, coloured based on the computed surface
pressure. Lowering the rear windshield, creating a spoiler at the end of the trunk and a boat-tail
shaped rear side led to increased pressure on the rear part of the car and, thus, lower drag.

Figure 7: VW Polo passenger car. Sensitivity maps for the rear and total lift minimization.
Combined views of the sensitivity maps for the rear (starboard) and the total lift (port). Red/blue
areas suggest inward/outward displacement, respectively. With di�erent targets, opposite trends
(particularly in the front part of the car) are observed.

Current research aims at a novel transitional process that, starting from the adjoint topol-
ogy solutions, generates a NURBS parameterized surface which can be used either as a CAD-
compatible solution to topology or as the initial shape for the shape optimization loop, in the
framework of a combined topology-shape optimization algorithm [6].



Figure 8: Topology optimization of a car air-conditioning duct targeting minimum total pressure
losses. The domain includes the inlet and outlet ducts that remain unchanged through the op-
timization process and the design space for the main body of the duct. The hole in the middle
of the domain is the space reserved for the gear lever. The grid consists of about 5.5 million
cells, the Reynolds number based on the inlet hydraulic diameter is Re≈ 3000. Top-left: duct
geometry. Top-right: computed porosity �eld at the last optimization cycle. Red areas correspond
to the solidi�ed part of Ω. Middle: Streamlines computed in the domain without any porosity-
based blockage/solidi�cation. Intense �ow recirculation occurs close to the inlet duct, where the
cross-section area increases abruptly. In addition, there is no clear path to lead the �ow to the
outlet duct. As a result, the �ow recirculates close to the outlet area, leading to high losses. Bot-
tom: Flow velocity streamlines computed in the optimized geometry. The optimisation made the
cross-section of the duct near the inlet smaller, in order to minimize recirculation. In addition,
a clear path connecting the body of the design space with the outlet ducts has been formed, in
order to smoothly steer the �ow towards the back seats of the car.
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