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Abstract. This paper presents a method for the quantification of uncertainty propagation using
intrusive Polynomial Chaos Expansion (iPCE) in CFD. In constrast to commonly implemented
non–intrusive methods which take advantage of existing CFD evaluation software in order to
quantify the statistical behavior of the flow, an intrusive PCE method is developed and imple-
mented to the 3D Euler equations. Uncertainties are introduced through the flow conditions
and their propagation throughout the flow field is quantified. A Probability Density Function
(PDF) is assumed for each uncertain flow condition and the generalized PCE inviscid equa-
tions for the corresponding coefficient fields of the flow variables are derived. Already known
properties of the equations, such as the first order-homogeneity, are found to hold in the new set
of the equations. The discretization schemes are adapted to the new set of governing equations
while a systematic approach to the corresponding eigenproblem is introduced. The method is
applied to 3D inviscid flow cases for which the mean value and the standard deviation of spe-
cific flow quantities characterizing the flow are quantified and compared with those computed
by the non–intrusive PCE and Monte–Carlo methods.
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1 INTRODUCTION

Computational Fluid Dynamics (CFD) methods ans software are indispensable tools in the
analysis and design in various engineering fields. The common practice is to analyze the flow
under consideration using a deterministic computational model. However, such ideal situations
are rare in real–world applications and the system’s performance is sensible to varying condi-
tions; for instance, a compressor’s efficiency is affected by variations/uncertainties associated
with the inlet and/or outlet conditions etc. In order to take into account these uncertainties,
non–deterministic approaches should be used.

During the last decade, polynomial chaos expansion (PCE) methods have been used to model
uncertainties in engineering applications [3, 4, 5]. These are based on the idea of homogeneous
chaos, [1, 2]. In contrast to sampling techniques such as Monte–Carlo, PCE methods are based
on the spectral representation of the uncertain quantities.

PCE methods can be intrusive (iPCE) or non–intrusive (niPCE) depending on whether the
governing equations are altered or not, [7, 4]. In the non–intrusive variant the CFD code is
used in its standard form as an evaluation software along with an integration formula based on
Gauss quadrature and the appropriate weighting functions that correspond to the assumed PDFs.
Through this method, the statistical moments of an objective function (such as the lift coefficient
of a wing) are computed. On the other hand, the intrusive methodology introduces uncertainties
in the mathematical model, the effect of which appears in the flow equations through the PCE
of the flow variables. This results in a new set of PDEs governing the PCE coefficient fields
of the flow variables to be numerically solved. Contrary to its non–intrusive variant, the iPCE
method computes the statistical moments of the flow field and, through post–processing, those
of the objective function of interest. In terms of computational cost, both PCE variants are far
more efficient than the Monte–Carlo method which requires thousands of CFD evaluations in
order to compute the statistical moments of the objective function.

In the present paper, the iPCE of the 3D Euler equations is presented. Emphasis is laid on the
derivation of the stochastic flow equations and their discretization. Uncertainties are introduced
by the boundary conditions. Other forms, such as uncertainties in the geometry or the properties
of the gas are not discussed in this paper, however their effect can be quantified through a similar
method.

2 UNCERTAINTY QUANTIFICATION (UQ) USING PCE

Let us assume a set of m uncertain or stochastic variables ~ξ = (ξ1, ..., ξm). Their proba-
bility density functions (PDF) wi are associated with an orthogonal polynomial bases ψ(i) =

{ψ(i)
0 , ψ

(i)
1 , . . . }, where by definition

< ψ
(i)
j , ψ

(i)
k >=

∫
Ei
ψ

(i)
j ψ

(i)
k widξi = δjk < ψ

(i)
j , ψ

(i)
j > (1)

In eq. 1, no summation for the repeated indices is implied, δjk is the Kronecker symbol and Ei
denotes the domain of wi.

The PCE of any quantity φ(~ξ) can be expressed by using a polynomial basis, defined as the
tensor product of ψ(i), Ψ = ⊗mi=1ψ

(i) = {Ψ0,Ψ1, . . . }, [1], as follows

φ(~ξ) =
∞∑
i=0

φiΨi(~ξ) (2)
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Bases Ψ are also orthogonal, namely

<Ψi,Ψj>=

∫
E

ΨiΨjwd~ξ = δij < Ψi,Ψi > (3)

In eq. 3, w(~ξ) =
∏m

i=1wi(ξi) and E =∪mi=1Ei. Based on the above and after normalizing the Ψ
polynomials so that <Ψi,Ψi >= 1, the first two statistical moments, namely the mean value
and standard deviation, of any quantity φ are given by

µφ = φ0 , σφ =

√√√√ ∞∑
i=1

φ2
i (4)

In iPCE methods, one should first apply the PCE to each flow variable, truncated to q+1 terms,
introduce these expansions into the flow equations and derive a set of new equations and bound-
ary conditions which must be numerically solved to compute the PCE coefficient fields of all
flow quantities. The statistical moments of the quantity of interest (such as lift, drag, losses or
any other, usually integral, quantity) are computed at a post-processing level, using eqs. 4.

To determine the most appropriate value of q, a common practice is to retain all polynomials
up to a user–defined degree C, which is referred to as the chaos order. For a selected chaos
order C and m stochastic variables, q is given by

q =
(m+ C)!

m!C!
− 1 (5)

The required q+ 1 equations per flow variable can be derived through appropriate Galerkin
projections of the governing equations/PDEs. The Galerkin projection of any scalar function
φ(~ξ) to Ψi is defined as

Gi[φ] =

∫
E

Ψiφwd~ξ (6)

By making use of the properties of the selected orthogonal polynomial bases, the q+ 1
Galerkin projections to the flow PDEs give rise to a new set of PDEs.

3 DERIVATION AND NUMERICAL SOLUTION OF THE iPCE EQUATIONS

3.1 The iPCE Flow Equations

The Euler equations for compressible fluid flows are written, in the standard vector form, as

∂~U

∂t
+
∂ ~fi
∂xi

= ~0 (7)

In eq. 7 ~U = [% %~u Et]
T are the conservative flow variables and ~fi = [%ui %ui~u+p~δi ui(Et+p)]

T

are the inviscid fluxes in Cartesian coordinates, % is the density, ~u = [u1, u2, u3]T is the velocity
vector, Et is the total energy per unit mass, p is the pressure and ~δi = [δi1, δi2]T . Eqs. 7 can be
rewritten as

∂~U

∂t
+ Ai

∂~U

∂xi
= ~0 (8)

with Ai= ∂ ~fi
∂~U

denoting the Jacobian matrices.

3



K.-D. Kantarakias, M. Chatzimanolakis, V. Asouti and K. Giannakoglou

The Euler equations solver this work is based upon is an in-house time-marching code, based
on the finite volume technique. It is fully parallellized, based on the multi-domain technique,
using the MPI protocol. It has been also ported to NVIDIA GPUs (using CUDA C), offering
significant speedup (about ×60).

A systematic approach to the derivation of the PCE Euler equations requires the following
two definitions, which extend the notion of Galerkin projections to vectors and matrices:

Definition 1 Let ~X = [X1, ..., Xm]T be a vector whose components are Xj =
∑∞

i=0 xj,iΨi(~ξ)

The Galerkin projected vector ~X of order q is defined as

Gq[ ~X] = [g0[ ~X], g1[ ~X], ..., gq[ ~X]]T

where gi[ ~X] = [Gi[X1], Gi[X2], ..., Gi[Xm]]T .

Definition 2 LetA be anm×mmatrix whose componentsAij are given byAij =
∑∞

k=0 aij,kΨk(~ξ).
The Galerkin projected matrix A of order q is defined as the block matrix

Gq[A] =


B0,0 B0,1 . . . B0,q

B1,0 B1,1 . . . B1,q
...

...
...

...
Bq,0 Bq,1 . . . Bq,q


where the elements of each m×m block are

(Bk1,k2)ij = Gk1 [AijΨk2 ] =

∫
E

Ψk1Ψk2Aijwd
~ξ 1 ≤ i, j ≤ m

One can verify that the following relation

Gq[A~x] = Gq[A]Gq[~x] (9)

holds for an any vector ~x and matrix A. Applying definitions 1 and 2 to eqs. 7, 8 and taking
eq. 9 into consideration the PCE Euler equations are derived (subscript q is omitted hereafter)

∂G[~U ]

∂t
+
∂G[~fi]

∂xi
=
∂G[~U ]

∂t
+G[Ai]

∂G[~U ]

∂xi
= 0

G[~U ] = [%0 (%~u)0 Et0 %1 (%~u)1 Et1 . . . %q (%~u)q Etq ]
T (10)

Eqs. 10 resemble their deterministic counterpart in that they are first–order homogeneous, since
~fi = Ai~U implies (based on eq. 9) that G[~fi] = G[Ai]G[~U ].

3.2 Numerical Solution of the iPCE Equations

For the sake of simplicity, the Galerkin operator will be omitted in what follows; thus, below,
A and ~U will denote G[A], and G[~U ] respectively. Upwind schemes can be applied to the
iPCE equations, given that the latter are first order–homogeneous and have the same form as
the deterministic ones. According to the vertex–centered finite volume method, each control
volume ΩP is formed around the corresponding grid node P , as illustrated in fig. 1 for a hybrid
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2D grid (its extension to 3D is evident). By integrating eqs. 10 over ΩP , in a steady flow
analysis, we get

ΩP

(
~Uκ+1
P −~Uκ

P

∆tP

)
+
∑

Q∈nei(P )

[
~ΦPQ

]
∂ΩPQ=0 (11)

where κ is the pseudo–time step counter, ~ΦPQ is the inviscid numerical flux crossing the inter-
face (∂ΩPQ) between two adjacent finite volumes (pointing from P to Q); nei(P ) stands for
the set of neighbouring finite volumes of node P . The inviscid fluxes are computed using the

P

Q
n

L
R

 P

Figure 1: Finite volume ΩP (hatched area) defined around node P on a hybrid 2D grid comprising triangular and
quadrilateral elements. ~n is a vector normal to the part of the interface between P and Q, pointing towards Q, with
magnitude equal to the length (2D) or area (3D) of this part. All flow variables associated with ΩP are collocated
at P (in both the deterministic and the iPCE formulations).

flux vector splitting technique [9], applied between P and Q, as follows

~ΦPQ = A−PQ
~UR
PQ+A+

PQ
~UL
PQ (12)

where APQ = ∂(~f·~n)

∂~U
=A+

PQ + A−PQ and A+
PQ, A−PQ are defined using the positive and negative

eigenvalues of the Jacobian matrix. For second–order spatial accuracy, ~UL
PQ and ~UR

PQ (where L
and R denote the two states on both sides of the interface between ΩP and ΩQ) are computed
from ~UP , ~UQ, ∇~UP and ∇~UQ as follows

~UL
PQ = ~UP +

1

2
( ~PQ)· ~∇~UP , ~UR

PQ = ~UQ −
1

2
( ~PQ)· ~∇~UQ

The so–computed fluxes are limited using the van Leer-van Albada limiting function [6]. Spatial
gradients are computed using the Green–Gauss integration formula.

The discretized eqs. 11 are solved at each pseudo–time step using the point–implicit Jacobi
which is written as

Dκ
P∆~Uκ+1,ν

P +
∑

Q∈nei(P )

Zκ
Q∆~Uκ+1,ν

Q = −~Rκ,ν
P

~Uκ+1
P = ∆~Uκ+1

P +~Uκ
P (13)

where κ is the pseudo–time counter, ν the Jacobi internal iteration counter, DP , ZQ stand for
the diagonal and non–diagonal matrices respectively and ~Rκ,ν

P is the residual array. Each Jacobi
iteration comprises one iteration to solve the equations corresponding to one of the statistical
moments by freezing the other terms.
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3.3 Eigen–Decomposition

The implementation of the FVS scheme requires the solution of the corresponding eigen-
problem. Starting point is the characteristic equations Λni

∂ ~W
∂xi

=~0 where ~W =[wA wB wC wD wE]T

are the characteristic variables, Λ = diag(u(n), u(n), u(n), u(n) +c, u(n)−c), u(n) = uini and c is
the speed of sound. By applying the iPCE followed by Galerkin projections, we get

G[Λ]ni
∂G[ ~W ]

∂xi
= ~0 (14)

Eqs. 14 can also be written as
djGj[Ψ0Ψ0] djGj[Ψ0Ψ1] . . . djGj[Ψ0Ψq]
djGj[Ψ1Ψ0] djGj[Ψ1Ψ1] . . . djGj[Ψ1Ψq]

...
...

...
...

djGj[ΨqΨ0] djGj[ΨqΨ1] . . . djGj[ΨqΨq]



~W0

~W1
...
~Wq

 = ~0 (15)

where
dj = diag(u

(n)
j , u

(n)
j , u

(n)
j , u

(n)
j + cj, u

(n)
j − cj)

~Wi = [wAi , w
B
i , w

C
i , w

D
i , w

E
i ]T

and u(n)
j , wAj , cj denote the j–th term of the PCE of ~u ·~n, wA and of c, respectively. Note that

Gk[ΨiΨj] is equal to <Ψi,Ψj,Ψk>=
∫
E ΨiΨjΨkwd~ξ.

The spectral components of cj can be found through the Galerkin projections of the expression
of c, written as a function of the conservative variables, as follows

cj = Gj[c] =

∫
E

√
γR

cv%iΨi

(
EtkΨk −

(%iuiΨi)(%kukΨk)

2%lΨl

)
wd~ξ (16)

In eq. 16, γ is the specific heat ratio, R the specific gas constant and cv the specific heat capacity
at constant volume. Note that a similar procedure can be used for the PCE of any quantity
expressed in terms of the conservative variables. By re–ordering eqs. 15, we get

diag[(Z(u(n)), Z(u(n)), Z(u(n)), Z(u(n) + c), Z(u(n) − c)]ŵ = ~0 (17)

where

ŵ = [wA0 . . . w
A
p w

B
0 . . . w

B
p w

C
0 . . . w

C
p w

D
0 . . . w

D
p w

E
0 . . . w

E
p ]T

Z(λ) =


λjGj[Ψ0Ψ0] λjGj[Ψ0Ψ1] . . . λjGj[Ψ0Ψq]
λjGj[Ψ1Ψ0] λjGj[Ψ1Ψ1] . . . λjGj[Ψ1Ψq]

...
...

...
...

λjGj[ΨqΨ0] λjGj[ΨqΨ1] . . . λjGj[ΨqΨq]

 (18)

Thus, the solution of an eigenproblem corresponding to a (5×(q+1))×(5×(q+1)) matrix is
now reduced to one corresponding to the (q+1)×(q+1) matrix Z. The diagonalization of Z
yields the desired eigenvalues and eigenvectors of G[Ai].
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4 APPLICATIONS

The iPCE method was programmed and applied to the UQ in an external and an internal
aerodynamic case. Comparisons with the niPCE method and/or the (much more expensive)
Monte–Carlo technique are shown.

4.1 Flow Around an Aircraft Model

The first problem is considered with the inviscid flow around an aircraft model. The study is
carried out around half of the aircraft (due to the symmetric flow conditions) and the unstruc-
tured CFD mesh consists of about 45K nodes and 256K tetrahedra. The quantity of interest is
the lift coefficient of the aircraft, for which the statistical moments must be computed.

Uncertainties are introduced from the stochastically varying infinite flow angle (a∞) and/or
the infinite Mach number (M∞). Four cases are studied. Results are presented in Table 1, where
N(µ, σ) denotes the normal distribution with mean value µ and standard deviation σ, whereas
Ψi stand for the Hermite polynomials. Also, U(a, b) denotes the uniform distribution in the
interval [a, b] and, in this case, Ψi are the Legendre polynomials.

Flow Conditions
iPCE niPCE iPCE niPCE

MC
Chaos order C=1 Chaos order C=2

M∞ = 0.7 µCL
0.119174 0.119107 0.119183 0.119106 0.118813

a∞ ∼ N(5o, 0.5o) σCL
0.0095783 0.009657 0.0095786 0.00964 0.0095327

M∞ ∼ N(0.7, 0.02) µCL
0.119448 0.119312 0.119485 0.119334 −

a∞ = 5o σCL
0.001792 0.001894 0.001917 0.001940 −

M∞ ∼ N(0.7, 0.02) µCL
0.119326 0.119237 0.119402 0.11925 0.119126

a∞ ∼ N(5o, 0.5o) σCL
0.0093172 0.0098453 0.0095903 0.009852 0.0097067

M∞ ∼ N(0.7, 0.02) µCL
0.119285 − 0.119372 − 0.119089

a∞ ∼ U(4.5o, 5.5o) σCL
0.010731 − 0.011010 − 0.011145

Table 1: UQ for the flow around an aircraft model. Statistical moments of the lift coefficient values computed
using iPCE, niPCE (with C=1 and C=2) and the Monte–Carlo method with 2000 replicates in each case.

Figure 2 compares the Mach number’s mean and standard deviation fields respectively, in
the case uncertainty is only due to the Mach number (a∞= 5o; second case in Table 1). It can
be seen that the iPCE and niPCE results perfectly match each other all over the aircraft surface.
One can also notice the increased variance after the supersonic area of the wing surface which,
in the case of niPCE, is extended over a greater area along the wing.

4.2 Flow in the CS10 Compressor Cascade

The second case deals with the transonic flow in a compressor cascade. This is practically
a 2D airfoil geometry extruded in the spanwise direction and studied herein as a 3D linear cas-
cade. The compressor profile is that of the Standard Configuration 10 (SC10; [8]) which results
by superimposing the thickness distribution of a modified NACA 0006 airfoil on a circular–arc
camber line. The blade stagger angle is 45o and the pitch–to–chord ratio is 1.0. The quantity of
interest is the static pressure rise (∆p) and uncertainty is introduced by the inlet flow angle (a1)
and the outlet isentropic Mach number (M2,is). Results are presented in Table 2.

Results of iPCE and niPCE are compared in figure 3. Once more, we may notice the higher
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Figure 2: UQ for the flow around an aircraft model (M∞∼N(0.7, 0.02), a∞ =5o). Mean Mach number distribution
(top) and standard deviation (bottom) on the aircraft surface, computed using the iPCE (left) and niPCE (right),
with C=2.

variance of the Mach number field on the blade surface after the shock. The convergence of the
spectral continuity equations, for the iPCE with C=2, is plotted in figure 4.

Flow Conditions
iPCE niPCE iPCE niPCE

Chaos order C=1 Chaos order C=2

M2,is = 0.4425 µ∆p 1.32930 1.33021 1.32944 1.32998
a1 ∼ N(58o, 1o) σ∆p 0.02675 0.02519 0.03179 0.02956

M2,is ∼ N(0.4425, 0.005) µ∆p 1.33754 1.33748 1.33728 1.33786
a1 = 58o σ∆p 0.009685 0.009135 0.009786 0.009346

Table 2: CS10 Compressor Cascade. Statistical moments of ∆p computed using iPCE and niPCE, with C=1 and
C=2.

5 CONCLUSIONS

This paper presents the development of the intrusive polynomial chaos expansion of the 3D
Euler equations through a systematic procedure that ensures the unimpeded numerical solution
of the resulting equations. For a single uncertain quantity the iPCE equations ask for about
1.5× more time than the baseline Euler equations which makes it far more efficient than any
Monte–Carlo sampling technique and comparable with the niPCE with chaos order equal to
one. In any other case, i.e. for more uncertain variables and/or higher PC order, the iPCE vastly
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Figure 3: CS10 Compressor Cascade (M2,is∼N(0.4425, 0.005), a1 = 58o). Mean (top) and standard deviation
(bottom) fields of the Mach number computed using the iPCE (left) and niPCE (right), with C=2.
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Figure 4: CS10 Compressor Cascade (M2,is∼N(0.4425, 0.005), a1 = 58o). Convergence of the residual of the
spectral continuity equations (iPCE, C=2).

outperforms the niPCE.
Though, in the cases studied herein, uncertainties are introduced through the flow conditions,

the implementation of any other type of uncertainty, such as uncertainties related to the geom-
etry, is straightforward by means of the presented development. Regarding future work, the
extension to viscous/turbulent flows along with the corresponding continuous adjoint method,
for use in optimization under uncertainties, is foreseen.
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