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Abstract In adjoint-based optimization for unsteady flows, the adjoint PDEs must
be integrated backwards in time and, thus, the primal field solution should be avail-
able at each and every time-step. There are several ways to overcome the storage
of the entire unsteady flow field which becomes prohibitive in large scale simula-
tions. The most widely used technique is checkpointing that provides the adjoint
solver with the exact primal field by storing the computed primal solution at a small
number of time-steps and recomputing it for all other time-steps. Alternatively, ap-
proximations to the primal solution time-series can be built and used. One of them
relies upon the use of the Proper Generalized Decomposition (PGD), as a means
to approximate the time-series of the primal solution for use during the unsteady
adjoint solver and this is where this paper is focusing on. The original contribution
of this paper it that, apart from the standard PGD method, an incremental variant,
running simultaneously with the time integration of unsteady primal equation(s) is
proposed and tested. For the purpose of demonstration, three optimization problems
based on different physical problems (unsteady heat conduction and unsteady flows
around stationary and pitching isolated airfoils) are worked out by implementing the
continuous adjoint method to both of them. The proposed incremental PGD tech-
nique is generic and can be used in any problem, to support either continuous or
discrete unsteady adjoint.

1 Introduction

The numerical solution of the unsteady adjoint PDEs requires the storage or re-
computation of the time-varying primal solution at each time-step. In the literature,
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strategies to overcome the full storage of the primal solution time-series have been
proposed. The most frequently used is (binomial) checkpointing [5]. This may en-
sure the user-defined balance between storage of the primal solution at selected
time-steps and recomputations. A viable alternative is to approximate the primal so-
lution time-series through an (incremental) method with low storage requirements,
employed during the solution of the primal PDEs, which are integrated forwards in
time. Approximation methods can be evaluated in terms of the accuracy of the re-
constructed primal solution and its effect on the computed sensitivity derivatives, as
well their computational cost. Approximation methods have the advantage of avoid-
ing (even partial) recomputations of the unsteady primal solution, as required by
methods such as checkpointing. Among them, linear interpolation, cubic-splines,
Fourier series or data compression techniques such as the Singular Value Decompo-
sition (SVD) [2, 10] should be reported.

In this paper, the PGD method [3, 1, 6] is used to reconstruct the primal field
by reducing memory storage. The main idea is to represent a multi-dimensional (in
space and time) field as the sum of products of 1D functions; for an unsteady 2D
scalar field of u, for instance, one may write

u(x,y, t)∼=
M

∑
µ=1

φ
µ(x)θ µ(y)τµ(t) (1)

Assuming that a small number M of modes is enough, a noticeable gain in mem-
ory usage is expected since scalar modes φ µ , θ µ and τµ (µ = 1, · · · ,M) are stored
instead of the entire u(x,y, t) field.

In an unsteady simulation, if the whole time-series of the solution u(x,y, t) must
be available before processing them by the PGD, no gain in storage requirements
is expected. For this reason, an alternative method is proposed, in which once the
instantaneous primal solution becomes available at each time-step, the already com-
puted modes are incrementally updated. This will be referred to as incremental
PGD (iPGD).

In this paper, the programmed PGD (or iPGD) library is used to reconstruct the
solution of an unsteady heat conduction and two unsteady inviscid flow problems
within optimization workflows supported by the continuous adjoint method [7]. For
the heat conduction problem, a 2D structured mesh is used and the spatial part of the
space-time decomposition is performed in the transformed domain. In the unsteady
flow problem, an immersed boundary approach (in specific, the cut-cell method [4,
9]) is used. The adaptive mesh used by the cut-cell method requires extra treatment
that will be made clear in section 5.

2 Reconstructing Already Computed Fields by PGD

Consider a 2D time-dependent field u = u(x,y, t), previously computed by any PDE
solver on a standard structured mesh. In the PGD framework, this solution can be
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approximated by the sum of a relatively small number (M) of 1D functional products
(eq. 1). All these modes are built in M successive steps. At the mth step (m ≤ M),
the corresponding 1D functions are computed so as to minimize the representation
error, which is given in discrete form by:

Em =
1
2

K

∑
k=1

I

∑
i=1

J

∑
j=1

[
m

∑
µ=1

φ
µ

i θ
µ

j τ
µ

k −ui, j,k

]2

(2)

The problem of defining the modes is non-linear, so it has to be solved iteratively
within each of the M steps of the successive enrichment by means of an alternating
direction scheme. For the mth modes (1≤m≤M), φ m is computed first, considering
θ m and τm to be known from the previous iterations or their initialization and so
forth. For instance to compute φ m, eq. 1, truncated by keeping only the first m terms,
is multiplied by τm and θ m and integrated along t and y. Since all the functions of
y and t are known, the 2D integrals can be computed and the final equations for
updating the modes are

φ
m =

∫
y

∫
t

uθ mtmdtdy−
m−1
∑

µ=1
φ µ
∫
y

∫
t

θ mθ µ τmτµ dtdy∫
y

∫
t
(θ m)2(τm)2dtdy

θ
n =

∫
x

∫
t

uφ ntndtdx−
n−1
∑

i=1
θ i ∫

x

∫
t

φ nφ iτnτ i dtdx∫
x

∫
t
(φ n)2(τn)2dtdx

(3)

τ
n =

∫
y

∫
x

uφ nθ ndxdy−
n−1
∑

i=1
τ i ∫

y

∫
x

φ nφ iθ nθ i dxdy∫
y

∫
x
(φ n)2(θ n)2dxdy

The three above equations for the mth modes are used iteratively until an appropri-
ate convergence criterion be met, before proceeding to the computation of the next
modes.

Through differentiation of eq. 2, it can be proved that the modes computed by
eqs. 3 minimize Em. Taking this into consideration, the incremental variant of PGD
(iPGD) can be formulated. This formulation and implementation of iPGD in un-
steady adjoint is the key originality of this paper.

3 Incremental PGD Method

In order to approximate a flow field u(x,y, t) using the method developed in the
previous section, the whole time-series should have been computed and stored be-
forehand. This storage should definitely be avoided. This section presents a new
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method (iPGD) which overcomes this drawback. The concept of the iPGD method
is that, the field reconstruction is gradually performed. During the integration of the
primal PDEs, the solution field at each new time-step is used to enrich the previously
computed modes.

Consider the same 2D time-dependent field u= u(x,y, t) which, hereafter, will
be in discrete form as ui, j,k. The field approximation is still given by eq. 1, but
modes should incrementally be updated at each time-step. Equations for updating
the modes are extracted by minimizing an error function similar to eq. 2. Since only
the current (time-index k=K+1) solution field is available, the error function must
be decomposed as:

Em =
1
2

I

∑
i=1

J

∑
j=1

[
m

∑
µ=1

φ
µ

i θ
µ

j τ
µ

K+1−ui, j,K+1

]2

+
w
2

K

∑
k=1

I

∑
i=1

J

∑
j=1

[
m

∑
µ=1

(
φ

µ

i θ
µ

j τ
µ

k −φ̃
µ

i θ̃
µ

j τ̃
µ

k

)]2 (4)

where the first term on the r.h.s. corresponds to the approximation error at the current
time-step, whereas the second one to the overall error for all the previous time-steps,
which have already been processed through the iPGD and yielded modes φ̃

µ

i , θ̃
µ

j ,
τ̃

µ

k . The contribution to the error is weighted by w which is user-defined. At each
time-step, modes (φ m

i ,θ m
j ,τm

k ) are updated and new values τm
K+1 are appended. The

unknown quantities are calculated by setting the derivatives of the error against zero,
getting

φ
m
i = Qi

1x/Qi
2x, i = 1, .., I (5a)

θ
m
j = Q j

1y/Q j
2y, j = 1, ..,J (5b)

τ
m
k = Qk

1t/Qk
2t , k = 1, ..,K (5c)

τ
m
K+1 = QK+1

1T /QK+1
2t , (5d)

where

Qi
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m
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θ
m
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m
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J
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j θ
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i τ
µ
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]

+ wφ̃
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m
j θ

m
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m
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m
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∑
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Q j
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Eqs. 5 are coupled and must be solved iteratively through the following algorithm:

• Step 1: Initialize φ , θ and τ for u(x,y,t) at the initial time instant, i.e. for k=1.
This is, practically, equivalent to the PGD of a known 2D spatial field. Set k=2.

• Step 2: Compute all φ m, θ m and τm, m=1, ..,M, using eqs. 5a to 5c.
• Step 3: Compute τm

k+1, using eq. 5d.
• Step 4: Set k=k+1. Return to step 2.

It is obvious that the above algorithm approximates the various instantaneous spatial
fields with different error as it proceeds from one time-step to the next. However, this
cannot be avoided since we are using a single error function E which amalgamates
all time instants; recall that the final error to be minimized in the one corresponding
to all time-steps.

4 Application 1: Optimization Based on the Unsteady Heat
Conduction Equation

The first application is dealing with the optimization of the temperature (T ) profile
along the left–most straight boundary Sc of a 2D domain Ω (fig. 2). A 100×80 struc-
tured mesh is used. Along the remaining boundaries of Ω , fixed Dirichlet conditions
are imposed on T . Temperature T (in Kelvin) along (Sc) is given by

T (ζ , t) = T̃ (ζ )+20ζ (1−ζ )sin
(

2πt
Ta

)
(6)

where its ”steady” part is
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T̃ (ζ ) =β1(5ζ −20ζ
2 +30ζ

3−20ζ
4 +5ζ

5)+β2(10ζ
2−30ζ

3 +30ζ
4−10ζ

5)

+β3(10ζ
3−20ζ

4 +10ζ
5)+β4(5ζ

4−5ζ
5)

+T1(−5ζ +10ζ
2−10ζ

3 +5ζ
4−ζ

5)+T2ζ
5

This rather complicated expression results from a Bézier-based parameterization
of the unknown temperature profile. In the above formulas, 0 ≤ ζ ≤ 1 is the non-
dimensional distance of any node on Sc measured from the bottom-left corner of Ω ,
and β1, β2, β4 are given by

β1 =
1

(b1−b2)2 +3
− 1

(b3 +2)2 +5
, β2 =

1
(b2 +b3)2 +4

− 1
(b3−1)2 +1

,

β4 =
1

(b3 +1)2 +2
− 1
(b1−b3)2 +5

where bq(q=1,2,3) are the three optimization variables. The extra variable β3 de-
pends on the other three, its role being to ensure that the mean temperature on
the boundary Sc remains constant and equal to 450K. This leads to the constraint
β3 = 1800−β1−β2−β4 to be met. The T profile in eq. 6 changes periodically in
time, with period Ta = 800s. The unsteady heat conduction equation in the trans-
formed (ξ ,η) domain is

R = ρCp
∂T
∂ t
− 1

J
∂

∂ξ i

(
k Jgi j ∂T

∂ξ j

)
= 0 (7)

where gi j is the contravariant metrics and J the Jacobian of the transformation.
The approximated temperature T , eq. 1, in the (ξ ,η) domain, takes the form

T (ξ ,η , t)∼=
M
∑

µ=1
φ µ(ξ )θ µ(η)τµ(t). In eq. 7, k=k(T ) is the thermal diffusivity, ρ the

material density and Cp the heat capacity. Assuming that the material is aluminium,
k(T )=0.0002213T 2−0.09592T+211.5[W/mK] (T in Kelvin), ρ =2.7kg/m3 and
Cp =0.910kJ/kgK. The length of boundary Sc is equal to 2m. The objective is to
minimize the area and time with T>Tcrit =400K. Since this objective is not differ-
entiable, it was replaced by

F =
1

ΩTa

t∗+Ta∫
t∗

∫
Ω

(
1− 1

1+ ek2(T−Tcrit )+k1

)
(aT +b)dΩdt (8)

where k1=3, k2=k1/(Tsa f e−Tcrit), a=3/Tcrit , b=1−aTsa f e and Tsa f e=450K>Tcrit
(a user defined relaxing threshold temperature). The time integral is extended over
Ta with the lower limit of integration being t∗, at which the periodic solution has
been established. The development of the continuous unsteady adjoint method is
carried out in the standard way, leading to the field adjoint equation

−ρCp
∂Ψ

∂ t
− 1

J
∂

∂ξ i

(
k Jgi j ∂Ψ

∂ξ j

)
+gi j ∂k

∂T
∂T
∂ξ i

∂Ψ

∂ξ j = f (9)
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where Ψ is the adjoint field and f results from the differentiation of the objective
function. Eq. 9 is solved by imposing time periodic conditions Ψ |t=t∗ =Ψ |t=t∗+Ta

whereas along the whole boundary S, Ψ |S,∀t = 0. Finally, the sensitivity derivatives
of F w.r.t. the design variables bq are given by

δF
δbq

=

t∗+Ta∫
t∗

∫
Sc

k
∂Ψ

∂n
δT
δbq

dSdt, q = 1,2,3 (10)

where δT
δbq
|Sc =

δT
δβk

δβk
δbq

(k = 1,2,3,4). The optimization was based on the steepest
descent method. The case ran for about 7 periods in order to ensure that the temper-
ature field becomes periodic; then, the next period was processed by the proposed
iPGD algorithm and stored for use during the integration of the unsteady adjoint
equation in reverse time. 100 time-steps per period Ta were used. For the purpose

Table 1: Application 1: Sensitivity derivatives corresponding to the design variable
data-set b1=0.05, b2=b3=0.01 for full storage of the primal field PGD and iPGD-
based compression with various number of modes. Non-incremental a posteriori
PGD (denoted by PGD M = 20) is also included in the plot.

δF/δb1 δF/δb2 δF/δb3

Full Storage -1.3715605463E-4 4.5884641458E-6 1.359568712E-2
PGD M=20 -1.3749363010E-4 4.6796390425E-6 1.362148509E-2
iPGD M=30 -1.4020728461E-4 4.3113618801E-6 1.391765592E-2
iPGD M=25 -1.4067134121E-4 6.4219368409E-6 1.381274791E-2
iPGD M=20 -1.4357302527E-4 6.7785627830E-6 1.406576690E-2

of comparison, the same optimization was repeated twice: (a) with full storage of
the results of the primal equations and (b) using the iPGD method for storing just
the φ(ξ ), θ(η) and τ(t) modes with various values of M. Of course, the full storage
could have been replaced by checkpointing with identical sensitivity derivatives. In
all cases, w=50.

The sensitivity derivatives computed with fully stored and iPGD’ed primal fields
are shown in table 1. Reasonable deviations due to the approximation were expected
but these were harmless for the optimization itself. In fig. 2, initial and optimized
time-averaged temperature fields are shown. The small overheated spot formed
closed to Sc is not contradictory since a greater part of the area is kept at lower
temperature and this yields lower values of F , eq. 8. In fig. 1(a), the corresponding
T̃ distributions are shown. The optimization follows a slightly different path in each
case (fig. 1(b)), as the adjoint solver relies upon differently approximated tempera-
ture fields. However, all cases converge to close data-sets of the design variables by
equally reducing the objective function. The memory needed, even with 30 modes,
is about 32.5 % less than the full storage of the primal unsteady field. In terms of
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memory usage , we should make clear that the comparison is made against full stor-
age, instead of checkpointing, to avoid also accounting for the extra computational
cost of the latter due to the partial recomputation of the primal field.
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Fig. 1: Application 1: (a) Initial and optimal temperature profiles T̃ (ζ ) along Sc
for full storage of the unsteady temperature field and using iPGD with M=30. (b)
Convergence of the objective function. (c) Blow-up view of (b).
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Fig. 2: Application 1: Time-averaged spatial T distribution on the left–most part of
the computational domain for: (a) the initial T̃ profile (eq. 7), with b1=b2=b3=0.01,
(b) the optimal one (b1=0.6903, b2=-0.3743, b3=-13.7670) as computed with full
storage of T and (c) the optimal solution (b1=0.8287, b2=-0.5367, b3=-14.0181)
computed using the iPGD with M = 30. Either optimization terminated after 20
cycles, using the same step of steepest descent.

5 Applications 2 & 3: Gradient Computation for the Unsteady
Euler Equations with the Cut-Cell Method

Herein, the PGD method is implemented to compute the objective function gradient
to be used during the shape optimization of an isolated airfoil parameterized using
Bézier curves, where the design variables (bq) are their control points’ coordinates.
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Gradient computation for a stationary airfoil, in which unsteadiness is introduced
by the time-varying far-field flow angle and a pitching airfoil are demonstrated. In
either case, the governing PDEs are the unsteady 2D flow Euler equations:

Ri =
∂Ui

∂ t
+

∂ fi j

∂x j
= 0, i = 1,4, x j = x,y (11)

where
−→
U =

[
ρ ρu ρv E

]T is the vector of conservative variables and fi j are
the inviscid fluxes in the Cartesian directions, ρ the fluid density, u and v the
Cartesian velocity components, p the static pressure and E the total energy per
unit volume. The objective function is the time-averaged lift over a single period,

F = 1
Ta

Ta∫
0

∫
Sw

pnkrkdSdt, where nk, rk are the components of the unit vectors normal

to the airfoil surface and the freestream velocity, respectively.
The required derivatives of F w.r.t. bq are computed by the continuous adjoint

method. The adjoint equations are [9]

−∂Ψi

∂ t
−A jik

∂Ψj

∂xk
= 0 i, j = 1,4, xk = x,y (12)

where Ai jk =
∂ fik
∂U j

and Ψi are the adjoint variable fields. The adjoint boundary con-
ditions are omitted in the interest of space.

When the adjoint solution becomes periodic, the sensitivity derivatives are

δF
δbq

=
1
Ta

Ta∫
0

∫
Sw

p
δ (nkrkdS)

δbq
dt +

Ta∫
0

∫
Sw

(Ψk+1 p−Ψi fik)
δnk

δbq
dSdt

+

Ta∫
0

∫
Sw

Ψi

(
∂ fil

∂xl

δxk

δbq
− ∂ fik

∂xl

δxl

δbq

)
nkdSdt

+

Ta∫
0

∫
Sw

Ψi
∂Ui

∂xl
uw

n
δxl

δbq
dSdt +

Ta∫
0

∫
Sw

(ΨiUi + pΨ4)
δuw

n

δbq
dSdt

The last two integrals are related to the normal velocity of the solid wall (uw
n ) and

vanish for the stationary airfoil.
The flow solution is obtained using the cut-cell method [4, 9], according to which

the flow simulation takes place on a Cartesian grid, covering both the fluid and solid
regions. For higher accuracy, cells cut by the body contour along with their closest
neighbours are subdivided into smaller ones (fig. 3). Consequently, the (i,j) data-
structure, being a prerequisite for applying the PGD, is no more valid. It is beyond
the scope of this paper to compare the accuracy of the cut-cell method with that
of CFD on body-fitted grids. Here, we are exclusively interested in evaluating the
adequacy of the (i)PGD approximations.
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(a) (b)

(c) (d)

Fig. 3: Application 2.2: Adapted meshes, (a) and (b), at the two extreme positions
of the pitching airfoil. Corresponding RR meshes, (c) and (d), used for the iPGD.

The integration of the flow equations is based on a cell-centered finite-volume
method with second-order accuracy in both space and time; fluxes are computed
using the Roe scheme [8]. Special treatment for cells cut by the airfoil is needed
in order to satisfy the conservation laws near solid boundaries with the required
accuracy. An extra difficulty appears, if the body is moving in time. In such a case,
the mesh is continuously adapted to the new position of the body, as follows. Firstly,
the mesh undergoes a coarsening process, where all cells close to the solid wall
are amalgamated with bigger neighbouring cells. Then, the body moves to its new
position and, starting from the already coarsened mesh, cells are split until a certain
level of refinement be met. Meshes are shown in fig. 3.

By definition, the PGD (or iPGD) can be applied only to structured meshes. The
lack of structure of the mesh used in the cut-cell method is overcome through a
Reference/Regular (RR) mesh. After solving the unsteady Euler equations with the
cut-cell method, the corresponding flow field is transferred to the RR mesh (fig. 3c
& 3d), which is as fine as the smallest cell of the cut-cell mesh (fig. 3a & 3b). After
that, the iPGD algorithm is implemented to the RR mesh as explained in section
2. The required transition from the adapted cut-cell meshes to the RR one, must be
quick and accurate. Using an efficient algorithm based on quad-tree data structure,
the correspondence between the cells of the two meshes is easily accomplished.
Each cell of the RR mesh takes on the flow variables of the cut-cell mesh cell which
is part of.

5.1 Application 2: Stationary Airfoil

The unsteady Euler equations are solved around a stationary airfoil. The far-field
flow conditions are M∞ = 0.3 and a∞ = Asin(ωt) [deg] with amplitude A= 3o and
period Ta=

2π

ω
=0.015s. The cut-cell mesh used for the simulation consists of 10500

cells; a constant time-step equal to Tα/20 is used.
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While integrating the flow equations from the previous to the current time-step,
each flow field is processed by the iPGD with M=10 and w=1000. Fig. 4 illustrates
the pressure fields, at two instants corresponding to the max. and min. angle of
attack, as computed by the cut-cell method. The comparison between approximated
and exact fields is satisfactory. After the time-integration of the flow equations, the

(a) (b)

(c) (d)

Fig. 4: Application 2: Instantaneous pressure fields for a∞=−3 o (a) and a∞=+3 o

(c) are quite close each other with the corresponding fields (b) and (d) computed by
the iPGD method.

iPGD’ed fields are made available to the adjoint software. A comparison of the
computed adjoint energy field based on the exact and reconstructed flow solutions
is presented in fig. 5.

Having made both the primal and the adjoint flows available, the sensitivity
derivatives of F w.r.t. bq are computed. Fig. 6 shows the effect on approximating
the primal solution through the iPGD method on the accuracy of sensitivity deriva-
tives. In the same figure, sensitivities computed by the posteriori PGD (i.e not in-
cremental) compression of the primal unsteady solution (fully stored just for this
purpose) are also shown. The extra deviation due to the incremental algorithm is
much smaller than the total difference between the a posteriori PGD and the refer-
ence (from full storage) values of the derivatives, demonstrating the capabilities of
the proposed incremental algorithm. Note that the only reason we additionally ran
the adjoint based on the a posteriori PGD’ed primal solutions is for obtaining a good
indication of the best accuracy we could ideally get by the iPGD.
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(a) (b)

Fig. 5: Application 2: Instantaneous adjoint energy fields for a∞=−3o based on the
flow solution by the cut-cell method (a) and the iPGD-based approximation to the
unsteady flow solution (b).
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Fig. 6: Application 2: Comparison of sensitivity derivatives computed by the ad-
joint using (a) full storage, (b) the a posteriori PGD’ed primal solution and (c) the
iPGD’ed one.

5.2 Application 3: Pitching Airfoil

In the pitching airfoil case, since the mesh is changing in time, its data structure
should have also been stored at each and every time-step over and above to the un-
steady flow solution. However, the special structure of the Cartesian meshes allows
minimum data storage, overcoming the need of compressing also the time-changing
mesh. The airfoil is oscillating around the point at chord/4 with position angle that
is a sinusoidal function with amplitude (3o ) and period equal to Ta =0.015 s, split
into 20 time-steps. The average number of cells used at all time-steps is about 7000.
The size of the RR mesh is 512×512. The far-field Mach number is equal to 0.3.

The flow field is compressed via the iPGD algorithm using M = 10 modes. In
fig. 7 two fields are shown at the extreme instants of the period for the exact and the
reconstructed fields.

The impact of the compressed primal fields on the adjoint solution was examined
by solving the adjoint equations twice with full storage and the iPGD’ed primal data.
Results of the adjoint solver are shown in fig. 8. For the two aforementioned cases,
the sensitivity derivatives are computed, fig. 9. Moreover, two extra curves for 20
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(a) (b)

(c) (d)

Fig. 7: Application 3: Instantaneous pressure fields at the lowermost (a) and the
uppermost (c) positions of the airfoil motion are almost the same with the corre-
sponding fields (b and d) computed by the iPGD method.

and 30 modes are shown. As the number of modes increases, the primal and adjoint
fields match each other much better and the error in the computed derivatives dimin-
ishes. Theoretically, by increasing the number of modes, the sensitivity derivatives
should tend to the ”exact ones” (the one from full storage). However, in practice they
seem to stagnate since, in order to save computational cost we end up with a rea-
sonably low number of modes. The saving in memory by the usage of the proposed
iPGD algorithm is remarkable. The full storage of the unsteady flow field needs an
average of 7000×20= 140000 values to be saved in memory whereas, even with
M=30, this number drops to 30(512+512+20)=31320 with the iPGD. The reason
for refraining to compare with checkpointing is exposed at the end of section 4.

6 Conclusions

The use of the PGD within adjoint-based optimization, for time-varying problems
was presented. The role of PGD is to approximate the time-series of the solution to
the primal PDEs to support the integration of the adjoint equations, backwards in
time. For the first time in the relevant literature, at least to the authors’ knowledge,
an incremental PGD algorithm is proposed. Its distinguishing feature is that there is
no need to store the time-series of the primal solution before processing them with
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(a) (b)

(c) (d)

Fig. 8: Application 3: Instantaneous adjoint energy fields in the lowermost (a) and
the uppermost (c) position of its motion are almost the same with the corresponding
fields (b and d) computed by the iPGD.
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Fig. 9: Application 3: Comparison of the sensitivity derivatives computed using
full storage and the iPGD’ed primal solution with M=10, 20, 30. The fact that the
sensitivity of the last design variable is approximated with the wrong sign is minor
since this corresponds to the trailing edge which remains still.

the PGD. Instead, all modes are updated upon completion of a single step of the
time–integration of the primal PDEs; more precisely, all spatial modes are updated
to account for the new instantaneous primal field and a new element is appended
to each one of the growing temporal modes. With the iPGD method, storage re-
quirements are much lower compared to the full storage; no comparison with the
checkpointing technique has been made since, the extra computation cost of partial
recomputations of the primal solution of checkpointing should also be accounted for
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and compared with the extra cost of running the iPGD algorithm. We refrained from
doing so since work on the acceleration of the iPGD method is in progress. The
mathematical formulation of the new iPGD method is provided. Unsteady adjoint
runs supported by the iPGD were demonstrated in unsteady heat and aerodynamic
optimization problems and proved to offer a great economy in storage requirements.
Even though all applications presented in this paper relied upon the continuous ad-
joint, the iPGD can also be used with discrete adjoint, as it is not related to the way
the adjoint problem is formulated and solved. Another contribution of this work is
the use of the iPGD with the cut-cell method, in which case the CFD meshes dy-
namically adapt to the shape boundaries. However, even in this case, it suffices to
use a Reference/Regular mesh and appropriate interpolation schemes in order to be
able to apply the iPGD as with standard meshes.
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