
A Two–Step Mesh Adaptation Tool Based on
RBF with application to Turbomachinery
Optimization Loops

Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

Abstract Adapting an unstructured CFD mesh to the modified geometry, in accor-
dance with the updated value-set of design parameters at the end of each cycle, is a
must in CFD–based shape optimization loops. Mesh adaptation is a nice alternative
to remeshing procedures which might become expensive and, also, hinder the ini-
tialization of new simulations from previous results. Mesh morphing, based on Ra-
dial Basis Functions (RBF) network, has been widely used in the past to smoothly
propagate boundary nodal displacements into the volume mesh while preserving
its validity and quality. To precisely capture even small design changes, all surface
mesh nodes must be used as interpolation nodes which, in case of large meshes
for real-world application, leads to excessive computational cost and memory re-
quirements. This paper introduces a cost reduction strategy for mesh adaptation, by
proposing a new two-step RBF interpolation employing the Sparse Approximate In-
verse (SPAI) preconditioner and the Fast Multipole Method (FMM). The software
is demonstrated in the aerodynamic shape optimization of a turbomachinery row.
The purpose of this paper is not to solve the optimization problem itself; emphasis
is laid on the way the proposed method may handle large displacements and, for this
reason, Evolutionary Algorithms (EA) which allow great variations in the values of
the design variables were first used. Adjoint-based optimization follows; its role is
to perform the refinement of the best solution obtained by the EA-based search.

Flavio Gagliardi, PhD Student,
e-mail: fl.gagliardi@gmail.com
Konstantinos T. Tsiakas, PhD Student,
e-mail: tsiakost@gmail.com
Kyriakos C. Giannakoglou, Professor,
e-mail: kgianna@central.ntua.gr
National Technical University of Athens (NTUA), School of Mechanical Engineering, Parallel
CFD & Optimization Unit, Athens, Greece.

1

2 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

1 RBF-based Mesh Displacement: Introduction & Literature
Survey

To perform an automated CFD-based aerodynamic shape optimization, a flow
solver, a shape parameterization method, an optimization technique and a proce-
dure to adapt or regenerate the CFD mesh for each new candidate solution must be
available.

The method presented in this paper focuses onto the problem of CFD mesh adap-
tation and is demonstrated in the optimization of a compressor stator. In specific, an
RBF-based mesh adaptation technique, able to smoothly propagate the displace-
ments of all surface mesh nodes to the interior of the domain has been devised and
programmed. This requirement springs from the need of adapting an existing mesh
to an updated CAD representation of the shape to be optimized. This can be used
in optimizations which employ a CAD system to build the geometry, with the CAD
parameters as design variables. In this paper, an in–house parameterization/design
software for turbomachinery bladings [18] is used to generate a NURBS-based rep-
resentation of the geometry.

Obtaining a new surface mesh conforming with the changed boundaries is the
starting point for deforming the volume mesh. This paper, however, focuses only
on the adaptation of the volume mesh given the displacements of the surface mesh
nodes which are obtained by inverting and displacing nodes in the NURBS para-
metric space, taking special care for trimmed surfaces [18].

RBF-based interpolation methods are robust but may become computationally
expensive, especially for large meshes. In section 2.1, it is shown that, by using
a data-reduction algorithm, fewer nodes are used to approximate the new shape,
reducing dramatically the computational cost and memory requirements compared
to the standard formulation. However, this is expected to deteriorate the geometrical
precision of boundaries. In section 2.2, a strategy to recover the deviation of the
surface mesh with respect to the prescribed shape, caused by the previously made
approximation, is proposed.

The theory of RBF networks, [5], is briefly summarized below. RBF networks
can interpolate discrete data in the n-dimensional space. In mesh displacement,
quantities to be interpolated are the known displacements defined at source nodes
or RBF centres. An RBF deformation function ddd :�3→�3 is a linear combination
of radially symmetric kernels φs(yyy) = φ(||xxxs −yyy||)1 centered at the N source nodes
xxxs ∈�

3 and weighted by wwws ∈�
3:

ddd(yyy) =

N∑
s=1

wwwsφs(yyy) (1)

where yyy is the target node position vector. All M (boundary and internal) mesh nodes
yyyt, t ∈ [1, . . . ,M], for which eq. 1 provides their displacements ddd(yyyt) are considered

1 || . . . || is the Euclidean norm.

A Two–Step Mesh Adaptation Tool Based on RBF 3

as target nodes. The N boundary mesh nodes with known displacements δδδs ∈�
3, s ∈

[1, . . . ,N] are used as source nodes xxxs.
Weights wwws are computed so as to exactly reproduce the imposed displacements

δδδs at source nodes; this requires the numerical solution of a linear system with an
N ×N symmetric positive-definite2 coefficient matrix AAA, namely:

φ1(xxx1) · · · φN(xxx1)
...

. . .
...

φ1(xxxN) · · · φN(xxxN)



wwwT

1
...

wwwT
N

 =


δδδT

1
...
δδδT

N

 (2)

The computation of weights wwws, by solving eq. 2, is the most computationally
expensive task. It shows poor scalability if implemented naively, due to both the
complexity of linear solvers and its stiffness. After solving eq. 2, the displacements
ddd(yyyt) for all mesh nodes yyyt are computed by eq. 1 at the cost of M ×N RBF kernel
evaluations. The behaviour of the RBF interpolation is highly influenced by the
chosen kernel φ [4].

Mesh adaptation based on RBF interpolation has being standing out in the litera-
ture for their wide range of application. Selim et al. [17] discuss advantages and dis-
advantages of the most widely used techniques, such as linear and torsional springs,
linear elasticity and several interpolation based methods. Based on their work, mesh
deformation based on RBF interpolation is one of the most promising approach in
terms of robustness and morphed mesh quality, on condition that its high compu-
tational cost and bad scalability can be mitigated by methods such as greedy data
reduction algorithms.

Greedy algorithms [11] start from a coarse approximation to the deformation
and iteratively refine it until the desired accuracy be reached. They use a subset of
the surface mesh nodes to describe the new shape, leaving the rest of the nodes for
error checking. These methods are more efficient than standard RBF interpolation
but they cannot reproduce exactly all surface deformations. The iterative procedure,
required to guarantee the error drop to a prescribed tolerance is, for tight surface
tolerances, time consuming. Some authors also suggested to apply a correction step
such as an explicit interpolation [16] or Delaunay graph mapping [19] after the
approximation step, but locally supported RBF interpolation appears to be a better
choice from the quality and robustness point of view [10]. Other methods aiming
at reducing the RBF-based interpolation cost can be found in the literature. RBF
multilevel techniques involve successive levels of nested RBF interpolations where,
at each level, the solution from the previous coarser level is interpolated [15, 14,
8]. In this paper, the interpolation is practically carried out on two levels, with the
advantage of being able to use other cost reduction methods, which have a dominant
setup time and would be impractical to use in many levels. In [13], a multiscale RBF
interpolation which uses multiple support radii to capture deformations at different
scales is presented. The interpolation matrix is built starting from a coarse subset
of source nodes. The algorithm proceeds by iteratively adding the remaining source
nodes using a support radius such that the newly added nodes do not affect the

2 Under certain conditions explained in [5].

4 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

previous, ending up with an easier to solve linear system. In such a method, the
necessary preprocessing phase cost is dominant, and it is suggested to be performed
once before all mesh adaptations.

2 The Proposed Two-Step RBF Mesh Displacement Strategy

The proposed method works by hierarchically using an approximate predictor step
followed by a correction one. Both rely on RBF networks. The two steps are briefly
described as follows:

• In the first step (predictor), all mesh nodes (surface, interior) become interpo-
lation targets and a new coarsened set of source nodes is generated by a non-
iterative data reduction method. This method is adaptive, in the sense that the
data reduction is performed by taking into account the displacement field to be
interpolated instead of just the spatial distributions of mesh nodes. The entire
mesh is displaced; however, boundary mesh nodes do not precisely respect the
known boundary displacements since a reduced number of sources is used.

• The second step (corrector), corrects the position of the surface mesh nodes,
through local deformations.

The first step generates a ”small” but dense coefficient matrix (its rank might be
by orders of magnitude lower than the number of surface mesh nodes) while the
second generates a ”big” (rank equal to the number of surface mesh nodes), though
very sparse, matrix.

2.1 Step 1: Predictor

The predictor is an RBF approximation tool based on data reduction according to
which the source nodes are coarsened by clustering. Cost reduction does not rely
only on the reduced problem size but, also, on the implementation of methods such
as the Sparse Approximate Inverse (SPAI) preconditioner [12] and the Fast Multi-
pole Method (FMM) [9]. The predictor is divided into three sub-steps: data reduc-
tion, training and application, which are described below.

2.1.1 Data Reduction

The objective of the data reduction phase is to find a reduced set of RBF centres
xxxr, r ∈ [1, . . . ,NR] which is representative of the displacement field of the surface
mesh nodes xxxs, s ∈ [1, . . . ,NS � NR]. For this purpose, an adaptive octree data
structure is employed, which recursively splits the Cartesian space. By taking into
account the surface mesh nodes xxxs density and the spatial gradient of the displace-

A Two–Step Mesh Adaptation Tool Based on RBF 5

ments ∇δδδs the collocation of more RBF centres in areas of rapid variation of the
imposed displacements is ensured.

The centres of leaf (childless) octree boxes xxxr are used as RBF centres in the
predictor training step. The displacement δδδr of each RBF centre xxxr is the averaged
displacement of the source nodes xxxs contained in the corresponding leaf box of the
octree. Such a method does not allow the error to be estimated a priori or reduced
iteratively, but it quickly generates the reduced point clouds to approximate the dis-
placement field. This approach is preferred since any error in the reproduction of
the imposed displacements will be resolved in the following corrector step. Figure
1 shows an example of selected RBF centres and the corresponding CFD surface
mesh.

Fig. 1 RBF centres xxxr (red
spheres) generated by the
data reduction algorithm
in the predictor step (for a
certain displacement of the
CFD mesh on the compressor
blade). Original mesh surface
nodes xxxs are displayed as
black dots. More RBF centres
lie in the area of high spatial
gradient of the displacements
∇δδδs. Generally, the RBF
centres xxxr do not lie on the
mesh surface.

2.1.2 RBF Network Training

The training process runs on the previously generated RBF centres xxxr. A global
support RBF kernel is chosen taking into account different characteristics, such as
mesh quality preservation[16], flop count, condition number of the generated linear
system and smoothing effect. In this step, the following kernel is used

φ(r) =
1

r
σ + 1

(3)

whereσ is the shape parameter regulating the width of the kernel and r the euclidean
distance between two nodes. The linear system of eq. 2, assembled with xxxr as RBF
centres, is solved by an iterative method.

6 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

A Sparse Approximate Inverse (SPAI) [12] preconditioner is implemented to
speed-up the convergence of the iterative solver. This preconditioner is, in gen-
eral, not symmetric, and a solver for non-symmetric matrices i.e., Bi-Conjugate-
Gradient-Stabilized (BiCGStab), has to be used . The SPAI preconditioner MMM is an
approximate inverse of an approximation to AAA (eq. 2). The method is based on the
minimization of the Frobenius norm

min
MMM
‖SSS MMM− III‖2F (4)

where III is the identity matrix and SSS is a sparse matrix formed by the largest entries
of AAA.

The sparsity pattern of SSS is defined a priori through a sparsification strategy based
on geometric considerations [6], avoiding thresholding strategies: for each RBF cen-
tre, all other centres in the neighborhood, from which the biggest entries of AAA arise,
are selected as entries of SSS . Thanks to the decaying RBF kernels, the largest entries
of AAA are arranged in bands and the largest entries of AAA−1 are expected to be at the
same location with the largest entries of AAA, [7], so that, for MMM, the same or a sim-
ilar sparsity pattern to SSS can be employed. Figure 2 shows the pattern of the large
entries of an RBF training matrix AAA and its inverse (AAA−1), for the CFD mesh of the
turbomachinery case.

Fig. 2 Pattern of the large entries in a predictor RBF training matrix AAA (left) and its inverse AAA−1

(right). Large to small entries are shown from blue to white. The matrix rank is ∼ 104 and is
originated from the turbomachinery case shown in Figure 1.

In eq. 4, the computation of MMM is based on a property of the Frobenius norm that
allows to split it into a sum of Euclidean norms

‖SSS MMM− III‖2F =

NR∑
i

‖SSSmmmi−eeei‖
2
2 (5)

where mmmi and eeei are the ith columns of MMM and III. Each summand in eq. 5 consti-
tutes a linear system, which is solved separately from each other with Cholesky

A Two–Step Mesh Adaptation Tool Based on RBF 7

decompositions. The rank of each linear system is noticeably reduced thanks to the
sparsity of mmmi. The number of decompositions needed is also significantly reduced
using geometric considerations: in fact, all RBF centres in the same neighborhood,
identified by an integer lattice3, will lead to the same reduced linear system which is
decomposed just once, [6]. This procedure overestimates the fixed radius neighbors
which leads to bigger linear systems. However, this is compensated by the reduced
number of linear systems to be solved, reduced complexity in the neighbors search
and higher quality of the preconditioner due to the greater number of entries.

Figure 3 shows the time required for the solver to converge including the setup
time for various preconditioners.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Time

10-10

10-8

10-6

10-4

10-2

100

102

R
es

id
ua

l

CG
BiCGStab - SPAI 0.6%
BiCGStab - SPAI 1%

Fig. 3 History of the residual of a full linear system (rank ∼ 4×104) for various combinations of
iterative solvers and SPAI preconditioners plotted as the function of normalized time. In the sake
of fairness, the setup time for the preconditioners, which appears as a delay before the solvers take
over, is considered too. Percentages in the legend refer to the density (which is equal to 1 minus the
sparsity of the matrix) of the preconditioners. The non-preconditioned CG solver does not have any
setup time but the convergence rate is badly affected by the system ill-conditioning. Two different
SPAI preconditioners were used, with different densities to show that a correlation exists between
density and quality but, of course, a denser preconditioner requires more time to be built.

2.1.3 RBF Network Application

After having solved eq. 2 for the weights wwwr, the interpolated displacement field re-
sults from eq. 1 applied at each mesh node. For large meshes the application time
can noticeably be reduced using the Fast Multipole Method (FMM) [9]. FMM is an

3 An integer lattice is tessellation of the �3 euclidean space in bricks. It is equivalent to a level of
an octree.

8 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

algorithm for approximating sums such as those appearing in eq. 1, with reduced
complexity and controllable error. Briefly, the FMM exploits the decay of the RBF
kernel by computing interactions between mesh nodes on different levels of accu-
racy depending on their geometric distances. This is achieved by low-rank approxi-
mations to the displacement field in conjunction with a hierarchical decomposition
of the Cartesian space. The quality of the low-rank approximations determines the
error made by the method.

There is a trade-off between complexity and approximation error and whether
this approach becomes advantageous or not depends on the mesh size but, also, the
minimum mesh nodal distance, which determines the maximum allowed multipli-
cation error. In fact, the risk is to introduce a great error (due to the prescribed tol-
erance) in the interpolated displacements which could yield critical mesh elements
quality. Figure 4 shows the time required to perform RBF network applications for
increasing mesh sizes with and without the FMM. The FMM-based RBF network
application is cheaper for big meshes.

The implementation relies on the black–box FMM (bbFMM)[9]. It is “black-
box” in the sense that the functional form of the low–rank approximation is inde-
pendent of the RBF kernel used since this is based on polynomial interpolation on
Chebyshev nodes.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Millions of Source Nodes

10-2

10-1

100

101

102

103

104

M
at

rix
-M

at
rix

 M
ul

tip
lic

at
io

n
tim

e
[s

]

Matrix-Free
bbFMM order 5
bbFMM order 7

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5

Millions of Target Nodes

Fig. 4 Wall clock time for the evaluation of eq. 1 by varying the number of source and target nodes
(always in the ratio 1:10) using the bbFMM method for the RBF kernel of eq. 3. The FMM-based
multiplications include the FMM setup time. Two interpolation orders, 5 and 7, are shown for the
bbFMM, introducing a maximum approximation error (infinity norm) smaller then 1×10−5 and
1×10−7, respectively. Measurements were performed on a computational node with two 6-core
Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz processors.

A Two–Step Mesh Adaptation Tool Based on RBF 9

2.2 Step 2: Corrector

The corrector step is based on a local RBF interpolation method. Locality is ensured
by the kernel formulation, which vanishes when the distances r of two mesh nodes is
higher than the so-called local support radius rs. The locally supported RBF kernel
used in this step is the Wendland C0 function [20]:

φ(r) =


(
1− r

rs

)2
if r < rs

0 if r ≥ rs
(6)

A tradeoff between the smooth propagation of the deformations in the volume
mesh, computation time and memory requirements, depending on the choice of the
support radius, is expected. Lower support radius leads to better conditioned and
sparser training matrix (see eq. 2) whereas deformation is dissipated in a smaller
portion of the interior mesh.

In the corrector, the RBF centres coincide with the surface mesh nodes with pre-
scribed displacements. Since the predictor has already displaced the surface mesh
nodes close to their target positions, the remaining surface displacements are rela-
tively small and a small local support radius can be chosen.

The concept of fixed-radius neighbors search is used to reduce the matrix filling
time in eq. 2. An integer lattice, scaled so that the distance between lattice points
is rs, is built to map nearby to each other mesh nodes. The lattice is, then, used
to compute non-zero interactions φ(r) between close nodes instead of all pairwise
interactions.

After solving the sparse linear system, with the help of the SPAI preconditioner,
the displacement field is obtained by evaluating eq. 1 at all mesh nodes. By searching
in a fixed-radius area, the computation of null kernel values of eq. 1 is avoided.

3 Compressor Stator Blade Optimization Results

The two–step mesh adaptation tool is tested by performing an EA-based, followed
by an adjoint-based, optimization of the blade shape of the TU Berlin TurboLab
low–speed compressor stator [2]. Inlet conditions are provided in the form of radial
profiles, corresponding to 39.7◦ average inlet flow angle w.r.t. the axial direction,
104 kPa average inlet total pressure and 301 K average inlet total temperature. The
outlet static pressure is adjusted to impose 9.5 kg/s full-annulus mass flow rate.

The objective is to minimize the mass-averaged deviation of the exit flow from
the axial direction, defined as

10 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

α =


∫

S O

(
cos−1

(
Va

|VVV |

))2

ρVa dS∫
S O

ρVa dS



1
2

(7)

where Va is the axial component of the velocity, |VVV | the velocity magnitude, ρ the
density and S O and S I the stator outlet and inlet sections.

The in–house GPU enabled RANS solver for compressible flows [3], employ-
ing the Spalart-Allmaras turbulence model, and its adjoint were used. The blade is
parameterized with the in-house turbomachinery row CAD software [18], with 133
design variables. The mesh is block-structured with ∼ 2.2×106 nodes.

In section 3.1, the performance of the mesh adaptation model is discussed. Opti-
mization results follow in section 3.2.

3.1 Mesh Adaptation to the Displaced Boundaries

Fig. 5 EA and adjoint-based optimization of a low-subsonic compressor stator blade: reference
geometry (1st), geometry generated by the EA–based optimization (2nd) which was used to explore
the design space before switching to the adjoint-based optimization (3rd). On the right (4th), the
shapes of the three blades are superimposed.

The mesh adaptation tool is tested by displacing the initial compressor stator
mesh to the improved design generated by the hybrid optimization. Fig. 5 shows
the reference mesh and those resulting from the optimization runs. Table 1 reports

A Two–Step Mesh Adaptation Tool Based on RBF 11

quality metrics for the reference and adapted meshes (resulting from the adjoint-
based optimization).

Reference Adapted
Min. Jacobian >0 >0
Min. Orthogonality 0.144 0.115
Avg. Orthogonality 0.79 0.76
Max. Normal Skewness 0.856 0.885
Avg. Normal Skewness 0.21 0.24
Max. y+ 0.50 0.51

Table 1 Quality metrics for the reference and adapted block structured volume mesh (∼ 2.2×106

nodes) in the optimal geometry resulted from the adjoint-based optimization and shown in figure
5. The sign of the Jacobian is used to check the validity of the mesh. Larger orthogonality metric
values and lower normal skewness values are desirable to avoid deteriorating the CFD solution
accuracy and robustness. Max. y+ < 1 of the first nodes of the wall is required to guarantee that the
mesh near the wall is adequate for CFD simulations.

Table 2 tabulates metrics showing the deviation (distance) of the reference and
displaced surface meshes at each step of the mesh adaptation procedure. The first
step reduces significantly the deviation but the resulting surface mesh does not per-
fectly fit to the new geometry. This is corrected during the second step.

Initial 1st Step 2nd Step
Infinity Norm 3.27×10−2 5.30×10−4 4.85×10−14

Euclidean Norm 3.83 1.83×10−2 1.51×10−12

Avg. Deviation 4.87×10−3 2.31×10−5 2.57×10−15

Table 2 Deviation metrics for the reference and displaced CFD surface meshes (∼ 1.20×105

nodes), resulting from the adjoint-based optimization, figure 5. The first column lists the values
for the surface mesh deviation prior to mesh adaptation. Columns labeled “1st and 2nd Step” give
the surface mesh deviation upon completion of the corresponding steps.

Figure 6 shows an analysis conducted in order to investigate the time and memory
requirements to perform a mesh displacement for growing mesh sizes. The predictor
application and corrector training are the most expensive ones. The former scales
linearly with mesh size, thanks to the Fast Multipole Method. The latter scales super-
linearly due to the BiCGStab computational complexity and increased matrix size
and setup time of the SPAI preconditioner. The predictor training time is almost
constant since the imposed surface mesh displacements are similar for all mesh
sizes. The corrector application phase also scales super-linearly due to the increased
number of RBF kernel evaluations, but its contribution to the total required time
remains minimal thanks to the computation strategy which is based on the integer
lattice.

12 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

0 2 4 6 8 10 12 14 16 18 20 22

Millions Mesh Nodes

0

2

4

6

8

10

12

14

Data Reduction

1st Step Training

1st Step Application

2nd Step Training

2nd Step Application
Other

0

2

4

6

8

10

12

14

T
im

e
[m

]

0

6

12

18

P
ea

k
M

em
or

y
[G

B
]

Computational Time
Peak Memory

Fig. 6 Computational time and max. RAM memory requirement for mesh displacements, by vary-
ing the mesh size. The computational time is broken down in the five main steps in the bar chart:
Clustering (§2.1.1), predictor training (§2.1.2) and application (§2.1.3) as well as corrector training
and application (§2.2). The bar chart and computational time refer to the left vertical axis, while
the peak memory curve points to the right one. Measurements are performed on a computational
node with two 6-core Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10GHz processors.

3.2 Aerodynamic Shape Optimization Results

The EA-based optimization was performed using the s/w EASY (Evolutionary Al-
gorithm System)[1] developed by the NTUA group. Only the 30 most important
design variables of the geometry, reparameterized by the in-house turbomachinery
row parameterization software, were used. The adjoint-based optimization relied
upon Sequential Quadratic Programming (SQP). The turbomachinery row parame-
terization software was differentiated and coupled with the in-house GPU-enabled
continuous adjoint solver, for computing the gradients [18].

The initial design shows a deviation of the exit flow from the axial direction of
5.52◦. The EA-based design space exploration was able to reduce it to 3.98◦ at the
cost of 150 CFD simulations. The adjoint-based optimization resulted to an even
better solution with α equal to 3.16◦, at the cost of 40 equivalent CFD simulations.
The deviation of the exit flow from the axial direction for the reference and opti-
mized blades are shown in Fig.7.

A Two–Step Mesh Adaptation Tool Based on RBF 13

Fig. 7
(
cos−1

(
Va
|V|

))2
ρVa field (see eq.7) at the stator outlet for the reference (left), best solution

from the EA (centre) and best solution from the adjoint-based optimization(right).

4 Conclusions

An efficient mesh adaptation method, based on RBF, that uses all surface mesh
nodes to ensure an exact surface representation was presented. This is achieved by
using a correction step, to move all surface mesh nodes to their exact positions,
following an approximate step (predictor), taking care of the largest part of the dis-
placements. These steps are furthermore accelerated using the SPAI preconditioner
based on geometric considerations and the Fast Multipole Method.

The reliability of the two-step strategy in cases with relatively large displace-
ments and the significant scalability, in terms of computational time and memory
requirements for large meshes, have been shown.

During the hybrid optimization of a low-subsonic compressor stator, the pro-
posed mesh adaptation method was successfully used, reducing the computational
resources (compared to a re-meshing strategy) required to improve the row design
and demonstrating its flexibility in handling large and small displacements. The re-
sults show that the proposed two-step mesh adaptation model has high efficiency
and its cost scales almost linearly with the mesh size, preserving mesh quality con-
sistently even in large design variations.

Acknowledgements The authors thank Dr. Varvara G. Asouti and Dimitrios H. Kapsoulis for
their assistance assistance during the EA-based optimization with the s/w EASY (Evolutionary
Algorithm System) [1] and Dr. S. Xenofon Trompoukis for his assistance with the in-house flow
and adjoint solvers [3].

This research was funded from the People Programme (ITN Marie Curie Actions) of the Euro-
pean Union’s H2020 Framework Programme (MSCA-ITN-2014-ETN) under REA Grant Agree-
ment no. 642959 (IODA project). The first author is an IODA Early Stage Researcher.

14 Flavio Gagliardi, Konstantinos T. Tsiakas and Kyriakos C. Giannakoglou

References

[1] (2008) The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY

[2] (2016) AboutFlow Project Website: TU Berlin TurboLab Stator Case,
http://aboutflow.sems.qmul.ac.uk/events/munich2016/benchmark/testcase3/

[3] Asouti VG, Trompoukis XS, Kampolis IC, Giannakoglou KC (2011) Unsteady
CFD computations using vertex-centered finite volumes for unstructured grids
on graphics processing units. International Journal for Numerical Methods in
Fluids 67(2):232–246

[4] de Boer A, van der Schoot M, Bijl H (2007) Mesh deformation based on Radial
Basis Function interpolation. Computers and Structures 85(1114):784 – 795

[5] Buhmann M (2009) Radial Basis Functions: Theory and Implementations.
Cambridge Monographs on Applied and Computational Mathematics, Cam-
bridge University Press

[6] Carpentieri B (2009) Algebraic preconditioners for the fast multipole method
in electromagnetic scattering analysis from large structures: trends and prob-
lems. Electronic Journal of Boundary Elements 7(1)

[7] Demko S, Moss WF, Smith PW (1984) Decay rates for inverses of band ma-
trices. Mathematics of computation 43(168):491–499

[8] Floater MS, Iske A (1996) Multistep scattered data interpolation using com-
pactly supported radial basis functions. Journal of Computational and Applied
Mathematics 73(1):65 – 78

[9] Fong W, Darve E (2009) The black-box fast multipole method. Journal of
Computational Physics 228(23):8712 – 8725

[10] Gillebaart T, Blom D, van Zuijlen A, Bijl H (2016) Adaptive radial basis func-
tion mesh deformation using data reduction. Journal of Computational Physics
321:997–1025

[11] Hon Y, Schaback R, Zhou X (2003) An adaptive greedy algorithm for solving
large RBF collocation problems. Numerical Algorithms 32(1):13–25

[12] Kallischko A (2007) Modified sparse approximate inverses (MSPAI) for par-
allel preconditioning. PhD thesis, Technische Universitat Munchen, Germany

[13] Kedward L, Allen CB, Rendall T (2017) Efficient and exact mesh deformation
using multiscale RBF interpolation. Journal of Computational Physics 345:732
– 751

[14] Lazzaro D, Montefusco LB (2002) Radial basis functions for the multivariate
interpolation of large scattered data sets. Journal of Computational and Ap-
plied Mathematics 140(1):521 – 536

[15] Narcowich FJ, Schaback R, Ward JD (1999) Multilevel interpolation and ap-
proximation. Applied and Computational Harmonic Analysis 7(3):243–261

[16] Rendall TCS, Allen CB (2010) Parallel efficient mesh motion using radial ba-
sis functions with application to multi-bladed rotors. International Journal for
Numerical Methods in Engineering 81(1):89–105

[17] Selim M, Koomullil R (2016) Mesh deformation approaches–A survey. J Phys
Math 7(181):2090–0902

A Two–Step Mesh Adaptation Tool Based on RBF 15

[18] Tsiakas KT, Gagliardi F, Trompoukis XS, Giannakoglou KC (2016) Shape op-
timization of turbomachinery rows using a parametric blade modeller and the
continuous adjoint method running on GPUs. In: 7th ECCOMAS Conference
Proceedings, Crete Island, Greece

[19] Wang Y, Qin N, Zhao N (2015) Delaunay graph and radial basis function for
fast quality mesh deformation. Journal of Computational Physics 294:149 –
172

[20] Wendland H (1995) Piecewise polynomial, positive definite and compactly
supported radial functions of minimal degree. Advances in computational
Mathematics 4(1):389–396

