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Abstract Uncertainties, in the form of either non–predictable shape imperfections
(manufacturing) or flow conditions which are not absolutely fixed (environmental)
are involved in all aerodynamic shape optimization problems. In this paper, a work-
flow for performing aerodynamic shape optimization under uncertainties, by taking
manufacturing uncertainties into account is proposed. The uncertainty quantification
(UQ) for the objective function is carried out based on the non–intrusive Polynomial
Chaos Expansion (niPCE) method which relies upon the CFD software as a black–
box tool. PCE is combined with an evolutionary algorithm optimization platform.
CAD–free techniques are used to control the shape and simultaneously generate
shape imperfections; next to this, a morphing/smoothing tool adapts the CFD mesh
to any new shape. In the cases presented in this paper, all CFD evaluations are per-
formed in the OpenFOAM environment.
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1 Introduction

A variety of stochastic and gradient–based optimization methods have been devel-
oped to cope with shape optimization problems in aerodynamics. Most of the rele-
vant algorithms minimize (or maximize) an objective function (to be denoted as F)
assuming that the flow conditions are fixed and/or the exact geometry can be man-
ufactured. However, this is not the case in real–world applications where the flow
conditions may vary and/or the manufactured shape may deviate from the CAD
model. This led to the development of algorithms for shape optimization under un-
certainties related to flow conditions and/or manufacturing imperfections. In the
latter, the objective function to be optimized can be expressed as F̂ = F̂(c,b,F) to
denote the dependency of F̂ on the stochastically varying environmental variables
c ∈ RM , the design vector b ∈ RN and the performance metric F .

Associated with any design under uncertainties is the process of Uncertainty
Quantification (UQ) which quantifies the effect of the uncertain variables on the
performance (F). In large–scale problems, Monte–Carlo [1, 9] methods are pro-
hibitively expensive UQ techniques.

A viable alternative is the Polynomial Chaos Expansion (PCE) [11, 4]. There are
two ways to implement the PCE. In the intrusive PCE, every uncertainty affecting
the flow model is introduced in the governing equations, new PDEs are derived and
numerically solved. In the non–intrusive PCE (niPCE), the evaluation software is
used as a black–box to compute the objective function values for some data–sets
(determined by the Gauss integration formulas) of the uncertain variables.

In this work, the niPCE method is used together with an evolutionary algorithm to
create a workflow for shape optimization under uncertainties. CAD–free approaches
are utilized for shape deformations and a mesh morphing/smoothing tool, namely
the Rigid Motion Mesh Morpher (R3M) [5], for the adaptation of the CFD mesh to
the changed boundary shapes.

It is R3M and its adaptive smoother that generate the geometrical imperfections
this paper deals with. Three applications are demonstrated, in which the way of
introducing geometrical imperfections is investigated. The first case deals with the
optimization under geometrical imperfections of an S–bend duct, the second with a
2D manifold and the last with a two–element airfoil.

2 Design–Optimization Under Uncertainties

An Evolutionary Algorithm (EA), assisted by surrogate evaluation models or meta-
models, is used for the optimization under uncertainties. In fact, this is the Metamodel–
Assisted EA (MAEA) of the general purpose optimization platform EASY (Evolu-
tionary Algorithms SYstem [3]) which can handle single- or multi-objective, con-
strained or unconstrained problems. EASY handles three populations, namely the µ

parents, the λ offspring and the elite set and applies evolution operators in confor-
mity with binary or real encoding of the design vector (b). For each offspring, the
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uncertainty of the function of interest F (such as drag, lift, losses, etc.) should be
quantified. Since UQ using niPCE involves many calls to the CFD tool, a MAEA
that uses low–cost surrogate evaluation models (radial basis functions networks) is
the right method to reduce the computational cost. Local metamodels are on–line
trained for each and every new individual generated during the evolution. For all but
the first generations, metamodels are used to pre–evaluate the offspring population
by, practically, interpolating the objective function values of some of the previously
evaluated individuals and indicate the most promising members to undergo CFD–
based evaluation [8].

The overall optimization workflow is presented in fig. 1. Topics such as the UQ
using the niPCE, shape parameterization and mesh morphing are discussed below
in more detail.

Fig. 1: Workflow for CFD–based shape optimization under uncertainties in case of
geometrical imperfections. The background optimization tool is a (µ , λ ) EA, with
µ parents and λ offspring in each generation.

2.1 UQ using Non–Intrusive PCE

Let F(ξ ) be a function where ξ is a stochastic variable and w(ξ ) its probability
density function (normal distribution). According to the PCE theory [11], F can be
expressed as a linear combination of a finite subset of orthogonal polynomials Ψi(ξ )
(of degree i; normalized Hermite polynomials)
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F(ξ ) =
q

∑
i=0

αiΨi(ξ ) (1)

with q being the chaos order. The first two statistical moments of F , i.e. its mean
value and variance, can be written as

µF =
∫

F(ξ )w(ξ )dξ = α0, σ
2
F =

∫ (
F(ξ )−µF

)2
w(ξ )dξ =

√
q

∑
i=1

α2
i (2)

The PCE coefficients (αi, i ∈ [0,q]) result from the following integrations

αi=

∞∫
−∞

F(ξ )Ψi(ξ )w(ξ )dξ (3)

computed using Gauss Quadrature (GQ). To do so, the evaluation of the problem
specific function is needed at a predefined number of the so–called Gaussian nodes.

After computing the statistical moments of F through a number of evaluations of
the Gaussian nodes, the appropriate objective function(s) to be maximized or mini-
mized can be computed. Either a multi–objective optimization problem, by seeking
the Pareto front on the (µF , σF ) plane, or a single–objective one, by concatenating
the statistical moments into a single function, can be used. In this work, the objective
function (F̂) to be minimized is defined as

F̂ = µF +κσF (4)

where κ is a user–defined (possibly signed) weight.

2.2 Shape Parameterization and Mesh Morphing

In this paper, without loss in generality, shape parameterization is based either on
Radial Basis Functions (RBFs) or cages associated with a coarse mesh that control
the CFD one through properly computed Harmonic Coordinates (HC) at the nodes
of the latter. The coordinates of either the RBF centers or the HC cage knots consti-
tute the design vector b ∈RN .

Radial Basis Function Model

K RBF centers are initially selected; these can either be a subset of the surface nodes
or any set of points around the shape. In the applications shown in this paper, the
RBF centers are user–defined, without necessarily coinciding with surface nodes.
The displacement ∆r of any surface node, initially being at position r, is given by
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∆r =
K

∑
i=1

wiφ(||rc,i− r||) (5)

where rc,i is the initial position vector of the i–th RBF center, φ is the RBF activation
function and wi are as many weights as the RBF centers, for each Cartesian direc-
tion. To compute the weights, eq. 5 is applied at the K RBF centers (separately for
each Cartesian coordinate) and the resulting linear systems are numerically solved.

The HC Two–Cage Model

Harmonic coordinates (HC), initially proposed for character articulation [6], use a
topologically flexible structure called “cage” to control deformations of 2D or 3D
domains. An HC–based technique that may control both shape deformations and
adapt the CFD mesh to the new geometry has been proposed in [7] by adopting a
two–cage control mechanism. The two–cage model enables the smooth adaptation
of the CFD mesh by avoiding mesh quality degradation due to large displacements
at the boundaries. The cages are filled with a very coarse unstructured mesh and,
by applying appropriate conditions and solving as many Laplace equations as the
number of the (internal) cage control knots, the nodal HC values are computed. The
HC are interpolated from the cage coarse mesh to the CFD mesh and then any CFD
mesh deformation can be explicitly defined by the cage control knots displacements.

Rigid Motion Mesh Morpher

Though the RBF networks or the HC control cages could also undertake the adapta-
tion of the CFD mesh to the updated geometry, the CFD mesh adaptation is herein
controlled by a separate mesh morpher and adaptive smoother (R3M: Rigid Motion
Mesh Morpher [5]). The reason is that the aforesaid smoother can also be used to
generate shape variations corresponding to manufacturing imperfections. The R3M
morpher is capable of displacing the internal mesh nodes by minimizing a given dis-
tortion metric by favoring rigidity in the critical directions of imminent distortion,
being thus able to handle mesh anisotropies.

The computational mesh, including boundary nodes, is split into a number of
overlapping stencils to be kept as rigid as possible. Let ui,s be the ideal displace-
ment of node i belonging to stencil ’s’; this stands for the displacement of the node
assuming a rigid motion of the stencil it belongs to (translation and rotation, without
any change in shape and size). Within the optimization loop, such an ideal situation
is not possible since the displacements of the boundary nodes are determined by the
value–set of design variables controlled by the EA which do not necessarily con-
form with the desired rigidity. To use R3M only for adapting the CFD mesh to the
new boundary which is not affected by uncertainties, it suffices to minimize

E1=∑
s

ws ∑
i∈s

µis(ui−uis)
2 (6)
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where ui is the displacement of each CFD mesh node, ws is a weight determining
the importance of each stencil and µis a weight associated with node i of stencil
s, µis accounts for mesh anisotropy, by favoring rigidity in directions of imminent
distortion. If Nn is the number of the CFD mesh nodes, eq. 6 has 3Nn unknowns and
E1 can be minimized in the least squares sense.

Over and above to mesh morphing, the same tool (R3M) can additionally be
used to smooth the boundary. To do so, all boundary nodes belonging to patches
controlled by the optimization algorithm are considered as “handles”. The position
of these handles determines the shape of the boundary based on “spring theory”.
In fact, each handle is connected with its underlying node with an ideal spring,
the stiffness of which is controlled by a scalar coefficient λ̃ . High λ̃ values cause
smaller variations in the wall shape, compared to the deterministic geometry, fig.
2. The final positions of boundary and internal mesh nodes are, then, computed by
minimizing

E=E1 + λ̃ ∑
j∈H

(u j−Vt
j)

2 (7)

where Vt
j are the displacements corresponding to the deterministic geometry and H

the set of handles.
For the needs of this paper, the smoother (last term on the r.h.s. of eq. 7) is used

to create the stochastic variations in the boundary shape, by making the assumption
that the uncertainty in the λ̃ value determines shape imperfections. Thus, for the
known Vt

j field (deterministic geometry resulting all from the EA–based search) the
minimization of E (eq. 7) provides a new CFD mesh with boundary different from
the deterministic one, which is affected by the stochastically varying λ̃ .

λ
~

1
λ
~

2
Baseline Geometry

New Deterministic Geometry
Initial position of RBF centers
New position of RBF centers

Fig. 2: Example of the effect of λ̃ coefficient in mesh deformation (2D). For the
displacements computed from the RBF model (red continuous line), the minimiza-
tion of E (eq. 7) determines the final nodal displacements (by considering imper-
fections) depending on the λ̃ values (blue/pink dashed lines for high/low values,
respectively).
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3 Applications

The workflow (fig. 1) for the design/optimization under uncertainties is applied to
three shape optimization problems.

3.1 Optimization of an S–bend Duct

This case deals with the shape optimization of an S–bend duct by considering ge-
ometrical imperfections. The optimization aims at minimizing F̂ , given by eq. 4,
where F stands for the total pressure losses between the duct inlet and outlet,

F =

∫
(p+ 1

2 ρu2)u ·ndS∫
u ·ndS

(8)

by deforming only the central curved part of the duct which is marked in red (fig. 3).
In eq. 8, u is the velocity vector, p is the pressure and n is the outward unit normal
vector at the boundaries of the flow domain.

The baseline 3D CFD mesh has been generated using CFD-GEOM [2] and con-
sists of hexahedra close to the walls, a zone of prisms and tetrahedra everywhere
else. The flow is laminar with the flow Reynolds number being equal to Re=550.
Uncertainty in λ̃ resulting in shape variations is assumed. In specific, λ̃ follows a
normal distribution with mean value µ

λ̃
=0.017 and standard deviation σ

λ̃
=0.005.

Fig. 3: S–bend duct. Left: Baseline geometry. Grey parts are kept fixed whereas
the boundary marked in red is free to deform. Right: Computed mean value and
standard deviation of total pressure losses (F) computed with the niPCE method for
chaos order q=2 and 3.

For each candidate solution generated during the optimization, UQ should be
performed in order to obtain the mean value and standard deviation of F . The central
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curved part of the duct, which is free to deform, is controlled using an RBF model
with K=24 RBF centers. The coordinates of the latter (as in eq. 5) are selected as
design variables for the optimization workflow using EASY. An (8, 12) MAEA, with
µ=8 parents and λ=12 offspring, was used for the optimization; the termination
criterion was set to 200 UQs. Metamodels were activated after the first 25 of them.

The optimization was performed with chaos order equal to 2. This was a rea-
sonable selection since, as shown in fig. 3, the UQ using either q=2 or q=3 yields
quite similar results; thus, q=2, at the cost of 3 CFD runs per UQ, was selected. The
optimized geometry yields an objective function (F̂) value 9.6% lower than that of
the baseline. The effect of the λ̃ value in the optimized S–bend geometry for chaos
order q=2 is shown in fig. 4.

Fig. 4: S–bend duct. Effect of λ̃ to the optimized S–bend geometry for the three
Gaussian nodes used for UQ with chaos order q=2. Differences in the volume of
the second and third geometry w.r.t. the first, caused by the variation in λ̃ , are 0.22%
and 0.47% respectively.

It is also worth comparing the results of the optimization of the S–bend duct un-
der geometrical uncertainties with those resulting from a run without uncertainties.
For this reason, the optimization without uncertainties has been performed, followed
by the UQ on the optimized geometry for q=2 and 3. Fig. 5 presents the conver-
gence histories of the optimizations with and without uncertainties. In table 1, the
mean value and the standard deviation of F computed for the optimized geometry
are tabulated. The optimized geometry yields an objective function F̂ value which
is by 10.4% lower than the baseline. All results have been normalized with the total
pressure losses of the baseline geometry (Fre f=137.84Pa).

Comparing tables in fig. 3 (optimization under uncertainties) and table 1 (UQ
in the optimized geometry without uncertainties), some differences can be noticed.
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Fig. 5: S–bend duct. Convergence histories of the optimization with and without
uncertainties.

Quantity q=2 q=3
µF/Fre f 0.8961 0.8960
σF/Fre f 0.0024 0.0025

Table 1: S–bend duct. Mean value and standard deviation of total pressure losses
computed with the niPCE method for q=2 and q=3 for the optimized geometry
obtained from the run without considering uncertainties.

The mean value of F in latter run is lower than this resulting from the former one
whereas the standard deviation of F is three times higher. In fig. 6, the total pressure
field in the optimized geometries is presented. In the geometry generated by the
optimization with uncertainties, the groove on the one side of the duct is smaller,
which is probably the main reason for which this shape has lower standard deviation
than the one generated from the optimization without uncertainties.

Fig. 6: S–bend duct case. Total pressure field in the optimized geometry resulted
from the optimization with (top) and without (bottom) considering uncertainties.
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3.2 Optimization of a 2D Manifold

The second problem deals with the shape optimization of a 2D manifold with one
inlet and three outlets, for minimum F̂ = µF +σF , F being the total pressure losses
across the duct (as in eq. 8).

The baseline CFD mesh has approximately 140K nodes and 70K elements. An
inlet velocity of Uin=0.3m/s leads to a laminar flow at Re=1300. A single uncer-
tainty in the coefficient λ̃ of the morpher is assumed, causing uncertainties in the
manifold shape. It is assumed that λ̃ follows a normal distribution with mean value
µ

λ̃
=0.3 and standard deviation σ

λ̃
=0.13.

The baseline manifold shape, extruded in the third dimension for demonstration
purposes, is shown in fig. 7. Areas marked in red are free to deform. The velocity
field in this geometry can be seen in fig. 8 (left).

Fig. 7: Manifold case. Baseline geometry plotted in 3D for demonstration purposes.
Deformable boundaries are marked in red.

The manifold is parameterized using an HC control cage with 45 knots; 28 knots
out of them are allowed to vary in both directions summing up to 56 design variables
in total (fig. 8; right). A (8, 12) MAEA was used and the metamodels were activated
after the first 30 uncertainty quantifications. In the subsequent generations, all in-
dividuals were pre–evaluated on the metamodels and the top two of them in each
generation were selected for CFD re–evaluations. After 300 UQs, a reduction in F̂
by ∼4% was achieved.

The effect of chaos order on the optimization of the manifold duct is provided
in table 2. Chaos order equal to 2 appears to be a good compromise in terms of
accuracy and computational cost. With a single uncertain variable, namely the λ̃

coefficient of the morpher and q=2, three CFD evaluations per UQ are needed. The
effect of the λ̃ value in the optimized geometry of the manifold is presented in fig.
10 and the convergence history in fig. 9. All results are normalized with the total
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Fig. 8: Manifold case. Left: Velocity field in the baseline geometry; recirculation
areas near the boundaries are the main reason for total pressure losses. Right: Base-
line geometry (marked in black) and HC cage marked in red. Design variables cor-
respond to the coordinates of the red nodes.

pressure losses of the baseline geometry. Though only a small part of the manifold
was free to deform, an important reduction of the F̂ was achieved.

Quantity q=2 q=3
µF/Fre f 0.9673 0.9674
σF/Fre f 8.89 E-04 8.87 E-04

Table 2: Manifold case. Mean value and standard deviation of F for q=2 and 3 for
the optimized geometry.
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Fig. 9: Manifold case. Convergence history of the optimization under uncertainties
for q=2. A reduction in F̂ of approximately 4% was achieved.
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Fig. 10: Manifold case. Effect of the λ̃ value to the manifold for the three Gaussian
nodes used for the UQ with q=2. Close–up view at the deformable and the difference
between the three geometries can be observed.

3.3 Optimization of the Flap of a Two–Element Airfoil

The last case deals with the shape optimization of the flap of a two–element air-
foil (fig. 11, left), without changing the shape of the main body for maximum
F̂ = µF −σF . The performance metric F used herein is the lift coefficient CL. The
baseline CFD mesh consists of approximately 90K nodes and 155K elements. The
flow is incompressible and turbulent with freestream Mach number M∞= 0.147,
Reynolds number based on the chord Rec=4.23 ·106 and zero freestream flow angle.
The Spalart–Allmaras turbulence model [10] is used. In this case, three uncertain
variables, that all follow normal distributions, were assumed. Uncertain variables
are the λ̃ coefficient of the morpher and the flap positioning (∆x, ∆y) w.r.t. the air-
foil main body. The mean value and standard deviation of the uncertain variables
are tabulated in table 3.

Uncertain Variable µ σ

λ̃ 0.10 0.03
∆x/chord f lap 0.0067 0.0033
∆y/chord f lap −0.0033 0.0023

Table 3: Two–element airfoil. Mean values and standard deviations of the uncertain
variables. Normal distribution for all of them is assumed.

The outcome of the UQ for q=2 is demonstrated in fig. 11 along with the main
body of the airfoil, which is kept fixed, and the baseline geometry of the flap. The
UQ with three variables and q=2 reqires 27 CFD runs to compute the mean value
and standard deviation of the lift coefficient.

The flap is parameterized using HC cages. The control cage consists of 17 knots
summing up to 34 design variables. The main body of the airfoil is kept fixed
whereas the flap is allowed to deform. For the flap, the leading and trailing edges are
not allowed to move. An increase in F̂ by∼2% was achieved leading to µF=2.6001
and σF=9.27 ·10−3.
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Fig. 11: Two–element airfoil. Left: Baseline geometry of the main body and flap.
During the optimization, only the flap is allowed to deform whereas the main body
is kept fixed. Right: Mean value and standard deviation of F for q=2. The lift coef-
ficient for the baseline geometry without considering uncertainties is CL=2.5465.

It can be noticed that the mean value of the lift coefficient of the optimized geom-
etry is higher than that of in the baseline geometry whereas the standard deviation
is lower. Thus, the optimized geometry operates more efficiently in a range of oper-
ating points. In fig. 12, the Mach number in the baseline and the optimized shape is
demonstrated. It can be observed that, in the optimized geometry, the Mach number
along the suction side is higher which is the reason of the increased lift coefficient.

The importance of using the low–cost surrogate models that EASY implements,
is crucial in this case since for each candidate solution the UQ requires 27 CFD
runs.

Fig. 12: Two–element airfoil. Mach number contours around the baseline (left) and
the optimized (right) flap geometry. (The optimized geometry has been evaluated
for the mean value of all uncertain variables.)
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Fig. 13: Two–element airfoil. Close-up view on the flap (baseline in blue; optimized
in red). The curvature of the mean camber line is increasing, to maximize the lift
coefficient.

4 Closure

This paper presented a way to implement geometrical (manufacturing) imperfec-
tions during the aerodynamic shape optimization under uncertainties. This is done
through the Rigid Motion Mesh Morpher (R3M) and its adaptive smoother. Uncer-
tainty quantification was based on the non-intrusive PCE and the optimization was
carried out by a metamodel–assisted EA. The use of metamodels was beneficial
since it led to a reduced number of flow solutions which, in the case of UQ (with
several uncertain variables), involves several calls to the CFD s/w. All these tools
have been put in the form of an automated workflow for performing optimization
under manufacturing uncertainties. Three applications in internal and external aero-
dynamics have been presented, with up to three uncertain variables related to the
shapes themselves. The proposed workflow can also be used to handle operational
uncertainties.
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