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Summary

Topology and shape are two of the main classifications of optimization in the field of fluid mechanics and are generally
treated as mutually exclusive, with topology defining a geometric solution when only the inlets and outlets of a flow
problem are known and shape finding a physically accurate optimal shape for a known initial flow geometry. This
paper (being sequel to a previous publication exclusively on 2D problems) presents the TtoST transitional process to
allow the continuous-adjoint-driven optimization of these two methods to be employed in tandem by representing (2D
and) 3D topology solutions with NURBS-parameterization from which shape optimization be initialized. By utilizing
the level set method, a convenient representation of the interface between the solid and fluid topological domains is
maintained throughout the topology process. The interface is fit with non-uniform rational B-spline (NURBS) curves
(2D) or surfaces (3D) by solving an auxiliary inverse design problem which aims at reducing the difference between
signed-distance fields generated about both the NURBS curves or surfaces being optimized and the section of interface
being fit. A shape optimization loop is then run on a body-fitted grid generated from the geometry defined by the fitted
NURBS parameterization. In the full paper, results of the tandem topology-shape process will be presented for both 2D
and 3D internal, incompressible fluid flow cases.

Keywords: Topology-to-Shape Transition, CAD-compatibility, Constrained Topology Optimization, Level Set Method,
Shape Optimization, Adjoint-Based Optimization

Introduction

In the field of fluid mechanics, topology optimization
(TopO) introduces a ‘blockage’ term (β ) into the flow
equations1, 3 which acts as a design variable for each
grid cell and is controlled to minimize an objective
function. In contrast, shape optimization (ShpO) reduces
an objective function4 by altering the original boundary
shape constraining the flow solution. In this paper, both
techniques employ the continuous adjoint method5, 6 to
drive design variables of a given problem toward an optimal
value-set such that the objective function(s) are minimized
or maximized.

This paper considers the benefits in conjoining the TopO
and ShpO processes, i.e. taking a TopO solution and using
it to initialize a ShpO process via the Topology to Shape
Transition (TtoST) process which has been developed in
2D11, 12 and is expanded upon in 3D in this work. To
properly initialize a ShpO solution, information pertaining
to TopO’s internal-flow boundaries (the ’interface’ between
fluid and solid domains) is required. In this work, such
information is defined using the level set (LS) approach
and specifically its zero contour. First proposed in,7 the

LS method is a conceptual framework which introduces a
signed-distance LS field through which moving interfaces
can be mapped. To integrate the LS method into TopO, β

is replaced by a function of the LS field, φ . To progress
the interface toward the optimal solution, the cell-centered
LS field is updated utilizing adjoint-based sensitivities and
corrected through application of an accurate, fast-marching
signed-distance correction algorithm.

In 2D problems, the TopO-to-ShpO transition process
subdivides the TopO solution’s interface into segments
which pertain to the connections between the inlets
and outlets. These interface segments are used to
construct individual signed-distance fields which act as
target solutions to an inverse design problem (referred to
as the ’field matching’ problem) which tries to iteratively
fit a non-uniform rational B-spline (NURBS) curve to each
segment. The NURBS curve’s control points are computed
by minimizing the difference between a narrow band (NB)
signed-distance field built about each NURBS curve and
that curve’s target signed-distance field. A body-fitted grid
is then generated from the fitted NURBS curve and used
to initialize an adjoint-driven ShpO process, resulting in a
parameterized optimal solution.
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In 3D, sub-division of the TopO solution’s interface
becomes more complicated. The interface is divided into
patches to be represented by individual NURBS surfaces,
such that interface connections between inlets and outlets
are represented by non-overlapping, air-tight sets of such
patches. Each connection’s patch set is used to construct the
target signed-distance field for the field-matching inverse
design problem, the solution process of which is similar to
that of the 2D problem, with the notable difference that the
simultaneous (and contiguous) movement of all NURBS
surfaces pertaining to the patches in the connection-set
is now required. Once all sets of NURBS surfaces are
fit, a boundary-fitted grid is generated to initialize an
adjoint-driven ShpO process.

This paper exemplifies the proposed method for
conjoining the TopO and ShpO processes through: a)
a 2D internal-flow three-manifold case in which the
volume-averaged total pressure losses between the inlet(s)
and outlet(s) is desired to be reduced while retaining equal
mass flow between each of the manifold’s outlets, b) a 3D
internal-flow straight channel case. All cases and in-house
code pertaining to the coupling process are implemented
within OpenFOAM 2.2.1.8

Topology Optimization

Flow Equations

The flow modeled in this paper is governed by
the steady-state Navier-Stokes equations for laminar,
incompressible fluids for which the bulk viscosity ν is fixed.
As with all equations found in this Section, repeated indices
indicate Einstein summation.

Rp =−
∂v j

∂x j
= 0 (1a)

Rvi = v j
∂vi

∂x j
+

∂ p
∂xi
− ∂

∂x j

[
ν

(
∂vi

∂x j
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∂v j

∂xi

)]
+H(φ)βMAX vi = 0 (1b)

In the LS blockage formulation of TopO, the addition into
the momentum equation which constrains the velocity with
a Heaviside H() of the level set variable φ (see eq. (9))
scaled with the large, positive user-defined value βMAX .
If H(φ) approaches 1, the added term becomes dominant,
forcing the velocity toward zero and effectively obstructing
flow. Conversely, if H(φ) approaches 0, the flow is
uninhibited.1, 2 Section 2.4 presents the LS formulation.
The usual boundary conditions (prescribed inlet velocity,
constant outlet pressure and no-slip condition along the
walls) are imposed.

Objective and Constraint

The objective function J to be minimized is that of the
volume-averaged total pressure losses between the inlet(s),
SI , and outlet(s), SO,

J =−
∫

SI

(
p+

1
2

v2
k

)
vinidS−

∫
SO

(
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1
2

v2
k

)
vinidS (2)

where ni are the components of the outward (from the fluid
to boundary) normal vector.

To account for the possible inclusion of an equality
constraint C = 0 into the TopO process, J is re-defined
as the Lagrangian function L according to the Augmented
Lagrange Multiplier (ALM) method.9 In this work, the
constraint prescribes percentages of exiting volume flow
rate to outlets. Written along the O outlets, this volume
flow rate constraint function is defined as

C =
1
2

O

∑
o=1

(∫
SOo

vinidS+ ro

∫
SIALL

vinidS

)2

= 0 (3)

where 0≤ ro≤1 is the desired volume flow rate ratio from
the oth outlet expressed as a percentage of the incoming flow
rate, with ∑

O
o=1 ro = 1.

Adjoint Equations, Boundary Conditions and Sensitivities

To formulate the adjoint field equations and boundary
conditions, the Lagrangian is further augmented by the flow
equation residuals as follows

Laug = L+
∫

Ω

qRpdΩ+
∫

Ω

uiRvidΩ (4)

with q and ui being the adjoint pressure and adjoint velocity
components, respectively. After lengthy derivation,10 the
variation of eq. (4) w.r.t. the level set design variable set φ

becomes
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where m is the computational cell index and S is the
boundary of the computational domain Ω. For simplicity,
Laug will be referred to as L for the remained of this
work. The Rq and Rui terms in eq. (5) become the adjoint
field equations by eliminating all terms with field integrals
containing derivative(s) of the flow variables w.r.t. the
design variables by setting their multipliers against zero.

The adjoint continuity and momentum field equations
which make δL

δφm
independent of ∂ p

∂φm
and ∂vi

∂φm
are

Rq =
∂u j

∂x j
= 0 (6a)
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The BC terms in eq. (5) are related to the adjoint boundary
conditions in that they describe conditions to be met in order
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for δL
δφm

to become independent of partial derivative(s) of
the flow variables w.r.t. the design variable set along the
boundary.10 After satisfaction of the field adjoint equations
and their boundary conditions, eq. (5) defines the sensitivity
derivatives of L w.r.t. the blockage field design variables,

δL
δφm

=
∫

Ω

viui
∂H(φm)βMAX

∂φm
dΩ = βMAX D(φm)vm

i um
i Ω

m

(7)

where the scaled LS Heaviside function H(φ) and its
derivative D(φ) depend only on the m-th grid cell with
volume Ωm associated with the discrete description of the
field domain.

Level Set Topology Formulation

To conveniently describe TopO’s interface throughout its
optimization process, the LS method was employed to
control flow blockage and will hereafter be synonymous
with the term TopO. The LS method represents design
domains in terms of a signed-distance function φ which is
differentiable at the interface Γ separating them, and must
have a gradient magnitude of 1 everywhere (‖∇φ‖=1) such
that φi ={negative ∀ i∈ΩSolid, zero ∀ i∈Γ, positive ∀ i∈
ΩFluid}.

The LS field can be initialized from any existing
blockage field 0≤β ≤1 through the relation

φm = φ(βm) = 1−2βm (8)

which defines a starting Γ. The LS contribution
to the blockage terms of the flow equations is the
continuously differentiable, piecewise NB sigmoidal
Heaviside relationship

H(φm) =


1 φm <−dNB
1
2

[
1− φm

dNB
− 1

π
sin
(

πφm
dNB

)]
|φm| ≤+dNB

0 φm >+dNB

(9)

where dNB>0 is the user-defined normal distance from Γ (in
either direction) which sets the limits of the NB. To ensure
stable convection, dNB is limited to include a single cell on
either side of Γ. This Heaviside function differentiates into
a finite and continuous function D(φm), i.e.,

δH(φn)

δφm
= D(φm)δ

n
m (10)

where δ n
m is a Kronecker delta.

To move Γ toward the optimal solution, the LS field
is subjected to a process of convection by solving what is
practically a steepest-descent step for the φ field

∂φm

∂ t
+Vm = 0 (11)

where Vm is provided by eq. (7) and ‖∇φ‖ = 1 should
hold. After eq. 11 is explicitly applied to Γ, ‖∇φ‖ =

1 does not necessarily hold, requiring that the φ field
undergo a signed-distance correction procedure after each
convection application. The procedure employed in this
paper efficiently corrects φm within the cells holding Γ using
the existing φ values of those cells and then conducts a fast
marching method to correct the remainder of the NB.13

To summarize the LS-TopO process, which is identical
in 2D and 3D, φ is initialized from an existing β field via
eq. (8), and then the following process is repeated until the
optimal solution is obtained. First, eqs. (1), followed by
eqs. (6) are solved iteratively to get the the flow and adjoint
solutions, respectively. Next, D(φm) and the LS convecting
scalar velocities Vn are computed via eqs. (10) and (11),
and are used to progress Γ toward the optimal solution by
updating φ . The correction process is conducted to get
correct φ values within the NB of the newly convected Γ.

Topology-to-Shape Transition (TtoST)

The process of ShpO implemented in this work takes
parameterized (CAD-compatible) curves or surface as
inputs in order to build a computational grid from which
to start. In the present work, these inputs are comprised
of NURBS. In order to allow a tandem TopO-ShpO
optimization to occur, a transitional method has been
developed in 2D12 and is here extended to 3D to
automatically generate and fit, as closely and efficiently as
possible, NURBS to TopO solutions so as to have an initial
boundary which matches the TopO geometry and can be fed
directly into a meshing program to begin the ShpO process.

The procedure for the proposed TopO-to-ShpO process
(TtoST) is divided into four main steps: Γ segmentation,
NURBS initialization, ‘target’ signed-distance field
generation and fit refinement via a ‘field matching’
algorithm,12 and can vary significantly between 2D and 3D
geometries. Results for application of the TtoST process
can be seen in Section 4.1 for 2D and Section 4.2 for 3D.
The boundaries of all computational grids are denoted as S,
with the subscripts I, O, Y , W and FW designating inlet,
outlet, symmetry, ‘design’ walls (for TopO: walls which
can potentially hold Γ; for ShpO: the parameterized walls)
and ’fixed’ walls (fluidized walls not pertaining to the
design space, and which for TopO do not hold Γ and for
ShpO are not parameterized), respectively.

2D TtoST in Brief

To initialize ShpO, a grid with parameterized boundaries
must be generated. In 2D, such a grid is constructed
from a contiguous set of NURBS curves which accurately
represent the solution obtained by TopO. Firstly, the TtoST
process finds target information to be fit by NURBS curves,
dividing the Γ information contained in TopO’s φ solution
into portions (referred to as ‘isoSegs’) which pertain to
each relevant inlet-outlet connection. The TtoST process
marches along the faces holding Γ, generating ordered
points which are assigned parametric values for initializing
NURBS curves via a one-shot least-squares initialization
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method. Such curve initialization is done with a pre-defined
degree and number of control points (NCPs) for all isoSeg
targets.

As this ‘naive’ fit may be poor, a search for a more
desirable degree and number of control points can be
optionally conducted by the TtoST process. Then, a
‘field matching’ design problem is solved for each curve
which attempts to minimize the difference between two
signed-distance fields: φTar, generated from the curve’s
target-portion of Γ, and φN , generated outward from the
NURBS curve up to a defined distance dNB (0.1m for all
curves in the manifold case). The generation of these
signed-distance fields is conducted using a signed-distance
correction process similar to that used in Section 2.4.

Since the field matching process desires to find the
optimal location of each NURBS curve’s set of control
points, its design variables are the degrees of freedom of
those control points Bn

q, where q is the control point’s
index (within the total control point set) and n is the
control point’s degree of freedom index. The field matching
objective and sensitivity derivatives are

JFM =
1
2

∫
Ω

H2(φN)(φN−φTar)
2dΩ (12)

δJFM

δBn
q

=
∫

Ω

[
1
2

∂H2(φN)

∂φN
(φN−φTar)

2

+ H2(φN)(φN−φTar)

]
δφN

δBn
q

dΩ (13)

with H2(φN) is a double Heaviside function which allows
only the curve’s NB to be considered for integration. For the
manifold case, the radial extent of this Heaviside is 0.01m.
For a cell m within Ω, the following sensitivity results12

δφm

δBn
q
=

pn
j − cn

m( j)

φm
Nq(u j) (14)

with p j being the point on the curve upon which cell m’s
signed-distance value depends, u j being the corresponding
parametric coordinate, and Nq(u j) evaluating the NURBS’s
derivative contribution at that parametric point u j. The
field matching algorithm progresses iteratively as follows
until the change in JFM (eq. (12)) falls below a user-defined
value. First, φN is built outward from the curve attempting
to fit the isoSeg. Then, sensitivities are found via eq. (13)
and the curve’s control points are moved. Eq. (12) is
evaluated and convergence is checked.

3D TtoST in Brief

In 3D, the parameterized boundaries from which ShpO
grids will be constructed are defined by the contiguous
set(s) of NURBS surfaces found via the 3D TtoST process.
Γ is described by an ‘isoMesh’ which is constructed from
the known connectivity of Γ’s interpolated ‘isoPts’. The
target information to be fit consists of air-tight sub-divisions
of this isoMesh referred to as ‘isoPatches’, which must
be constructed such that a single NURBS surface can

represent it. The isoMesh is built outward from the
edges of ‘source’ boundary patches types (inlet, outlet and
permeable-e.g. symmetry plane). In this way, the important
boundary information of the case is retained for ShpO.
There are effectively two portions of the isoMesh: source,
built along SI , SO and SY , and internal, built along Γ, SDW ,
and SFW . To sub-divide the isoMesh into isoPatches, a
marching algorithm is performed outward from the source
edges which claims faces of the isoMesh by isoPatch ID
until another isoPatch’s marching front is encountered,
forming a set of contact fronts between isoPatches. For
each contact front, the isoPatch must generate a splitting
connection between it and its source edge.

To define a NURBS surface via skinning, pairs of u
and v parametric bases are defined, with each pair having
a uniform knot vector of the same size. The target u and
v portions of each NURBS surface are found by sorting
the isoSegs pertaining to that surface’s isoPatch into four
ordered sets. To define the uniform knot vectors, the
number of control points to represent each isoSeg must
be defined. Once the NCPs of each isoSeg, and therefore
the uniform knot vectors, have been defined, the NURBS
surfaces are generated with a skinning algorithm. Since all
NURBS surfaces share a degree, the 3D parameter search
only searches for the best-fit degree, in a manner analogous
to the 2D parameter search.

Once initialized, the field matching process can be
performed on the set of contiguous NURBS surfaces. For
each independent set of surfaces pertaining to inlet-outlet
connections, a target signed-distance field is generated in
the same manner as 2D. Subsequently, the field matching
procedure is applied in a two-step process. First, the
‘wireframe’ of the NURBS set is fit, i.e. the sensitivities
found are only applied to the control points shared by one or
more NURBS surfaces. Displacement of wireframe control
points is fixed if they are shared with a NURBS surface
representing SI or SO, and restricted to planar motion if
shared with a NURBS surface representing SY . Then,
the control net of all surfaces is fit, i.e. the sensitivities
found are only applied to the internal control points of each
surface. The objective (and therefore the sensitivities) of the
field matching process are trivially extended to 3D, with the
only difference being that eq. 14 becomes

δφm

δBn
q
=

pn
j − cn

m( j)

φm
Nq(u j)Mq(v j) (15)

where Nq(u j) evaluates the NURBS’s u-basis’ derivative
contribution at that parametric point u j and Mq(v j)
evaluates the NURBS’s v-basis’ derivative contribution at
that parametric point v j.

Shape Optimization in Brief

Once Γ is accurately and parametrically represented via
the TtoST process, a boundary-fitted grid is generated so
that ShpO can run. The flow and adjoint equations (and
boundary conditions) for the ShpO are identical to eqs. (1)
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and (6) if the blockage terms are excluded. The design
variables bl for ShpO are the degrees of freedom of the
control points which define its parameterized boundaries.
The sensitivities for the ShpO control points are computed
via

δJ
δbl

=−
∫

SDW

[ (
ν

(
∂ui

∂x j
+

∂u j

∂xi

)
n j−qni

)
∂vi

∂xk

δxk

δbl

− (qRp +uiRvi)nk
δxk

δbl

]
dS (16)

where δxk
δbl

is computed analytically through the NURBS
formula.6

Tandem Optimization Cases

All geometries presented employ SFW entrance channels
to develop boundary layer profiles between the inlets and
outlets of a case and that case’s design domain (the portion
of the case in which β is allowed to be convected). The
grids of all cases are Cartesian, with a uniform edge length
as stated. The kinematic viscosity ν of all flows presented is
1.5x10−5 m2

s , and the uniform velocity defined for each case
defines a Reynolds number of 500. The objective function
J is given by eq. (2). For the LS process, dNB was selected
to be equal to the grid’s Cartesian edge length. Initially, the
internal field is specified as fluid (β = 0) and all cells owned
by the design walls (SDW ) are specified as solid, and thus
initially hold Γ. For all ShpO cases, SI , SO, SY and SFW
boundaries are considered fixed during the optimization
process.

2D Test Case: Triple-Outlet Manifold

The 2D Triple-outlet manifold case consists of an inlet and
three outlets of uniform width and spacing. The TopO grid
has 33000 cells with edge length 0.001[m]. The velocity
at the inlet is 0.15 m

s x̂1 (x̂i is the unit vector along the ith

Cartesian axis). The mass fraction constraint was specified
to enforce 33% of the inlet flow for all outlets. The
geometric data and φ field solution (found by the TopO
process) of the manifold case are shown in fig. 1. Γ is
labeled according to how the TtoST algorithm subdivides
it into isoSegs.

The least-squares initialization and field matching fit
of the curves representing the manifold case’s four TtoST
isoSegs can be seen in fig. 2. In order, the final degrees
and number of control points the TtoST process found for
each curve are 4, 3, 3, 7, and 7, 7, 9, 9, respectively.
Although the initialization of the curves is fairly accurate,
the field matching algorithm allows all aspects of Γ to be
parametrically represented with a high degree of accuracy.

After conducting a ShpO on a boundary fitted grid of
67000 cells, the objective function was reduced by 3.4%
and the prescribed mass fraction out of each outlet was
maintained. The boundary of ShpO solution is compared to
the parameterized TtoST NURBS solution in fig. 3. ShpO
process deemed to expand all channels of the manifold,

Figure 1: The TopO minimal volume-averaged total
pressure loss and mass-fraction constrained φ solution and
geometry of the 2D manifold case. The solution’s Γ

exists between between the fluid (red) and solid (blue)
level set domains. Portions of Γ pertaining to inlet-outlet
connections are labeled according to how the TtoST process
defines isoSegs.

compensating for the fact that TopO’s Γ does not have
boundary conditions imposed upon it.

3D Test Case: Straight Channel

The 3D straight channel case consists of one inlet and outlet
of identical size. The grid has 50000 cells with edge length
0.02[m]. The velocity at the inlet is 0.0375 m

s x̂1. No mass
fraction constraint was specified as only one outlet exists.
The geometric data and φ field solution (found by the TopO
process) of the straight channel case are shown in fig. 4.

The result of the TtoST’s sub-division procedure on
the straight channel’s Γ can be seen in fig. 5. The TtoST
algorithm first builds the isoMesh from the source edges of
SI and SO, first traveling inward on SI and SO, then outward
across SFW and Γ. Information concerning the segregation
of SFW and Γ within the isoMesh is stored. Then, the
isoMesh is divided into isoPatches to be fit by NURBS
surfaces. SI and SO isoPatches are generated first, followed
by those representing Γ and SFW . The isoPatch edges are
divided into isoSeam point sets which are shared by pairs
of isoPatches. These isoSeams are ordered individually for
each isoPatch to make portions of its their edges represent
targets for the u and v basis of the NURBS surfaces to fit
them.

Conclusions

The TtoST method discussed in this work allows for
topology optimization and shape optimization to be
considered in tandum by representing the interface of
topology solutions in a parameterized manner. Specifically,
this paper expanded the previously published 2D TtoST
process to 3D solutions and showcased the basic 3D steps
through a straight channel case. In the full paper, the
remaining results for the 3D case (those of NURBS surface
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Figure 2: TtoST fitting of the manifold case’s isoSegs:
(top): the least-squares initialization. (bottom): the result
of the field matching process, resulting in an accurate
representation of Γ. Both plots include the control polygons
of all NURBS curves.

fitting, mesh generation and subsequent shape optimization)
will be presented and discussed.
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Figure 5: The 3D TtoST process’ procedure for subdividing
the straight channel’s Γ: (A): isoMesh generation. The
outer edges of the SI and SO case patches act as the mesh
generation starting points and are marked in red. (B):
isoMesh subdivision. The algorithm generates isoPatches
in the order indicated by number, with splitting connections
generated automatically as needed. The resulting set of
isoPatches is air-tight and represents the entire inlet-outlet
connection. (C): isoPatch parameterization. The edges of
each isoPatch are ordered to represent the u and v basis of
the NURBS surface to fit it. Only isoPatches 0, 2 and 5 are
shown for clarity.
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