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In fluid mechanics, two of the most widely used optimization approaches are shape
and topology optimization, which are generally treated as mutually-exclusive. This paper
presents a general continuous adjoint formulation for both shape and topology optimiza-
tion, focusing on (a) crucial aspects of computing accurate shape sensitivity derivatives
such as the differentiation of the turbulence model PDEs and the proper treatment of
grid sensitivities and (b) a synergistic, sequential application of topology and shape op-
timization, in which topology is used to define a preliminary solution from which shape
optimization can be initiated. To achieve this, a transition process is used to accurately
represent and parameterize the topological solution with NURBS surfaces. The flow cases
presented in this work and the in-house code pertaining to the optimization and transition
process are implemented within OpenFOAM. Results from purely aerodynamic as well as
multi- disciplinary applications including Conjugate Heat Transfer (CHT) are presented.

I. Introduction

Shape optimization was initially introduced as a shape control technique to reduce an objective function1

and relies on altering the original boundary shape and, thus, its flow solution. In the past the continuous
adjoint method has been widely used to drive shape optimization loops.1–5 However, in the literature
of continuous adjoint methods for shape optimization, a number of assumptions during the derivation of
the field adjoint equations and sensitivity derivatives (SD) expressions is usually made. Two of the most
significant pertain to the differentiation (or absence thereof: the so-called “frozen turbulence” assumption)
of the turbulence model PDEs3,6–8 and to the treatment (or lack) of grid sensitivities.3,9, 10 In this paper,
a continuous adjoint method that differentiates the turbulence model PDEs and treats the grid sensitivities
via the imposition of additional restrictions to the Lagrangian is presented and the impact of commonly
made assumptions in the accuracy of the computed SD is showcased.

Topology optimization, first proposed in Ref. 11 for structural mechanics, has been expanded to the field
of fluid mechanics through the introduction of a source term into the Stokes,12–14 laminar,15 turbulent8

steady and unsteady,16 flow equations. This source term acts as a design variable for each grid cell and
its corresponding field is controlled to minimize an objective function. The interested reader can find an
overview of relevant topology optimization methods, focusing mainly on structural but including also multi-
disciplinary applications in.17,18 Topology optimization is commonly employed in fluid mechanics to develop
optimal internal-flow paths between prescribed inlets and outlets according to provided objective functions,
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but itself produces solutions which are not necessarily CAD-compatible. In contrast, shape optimization
may only alter boundaries of known connectivity to search for an optimal solution, but uses far fewer design
variables than topology (i.e., the boundary nodal or control point coordinates instead of internal field values)
and is inherently CAD-compatible if the parameters of the CAD model are used as the design variables. In
addition, and unlike topology optimization, shape imposes proper flow boundary conditions, thus leading
to a more physically accurate solution. Thus, a compelling avenue of research is to be able to process a
topology solution accurately such that it becomes parameterized and to then use it to initialize a shape
optimization process which further refines the solution. This process was presented for 2D flows in Ref. 19
and is expanded to a 3D approach in this paper.

The objective function gradients driving the employed topology and shape optimization methods are
computed with the continuous adjoint method. Since the mathematical development of the continuous
adjoint method for both topology and shape optimization is, to a large extent, common, a general framework
for continuous adjoint-based optimization is presented in section II. In section II.A, the mathematical
development of the continuous adjoint method is presented for both fluid flow and CHT problems, following
three different formulations regarding grid sensitivities. For the sake of simplicity, the differentiation of
the turbulence model PDEs is not presented in this section. Instead, this takes place in section II.B,
where the impact of the turbulent viscosity variation is investigated. In section II.C, the development of the
continuous adjoint method for topology optimization problems, employing the level set method, is presented.
Without loss in generality, the study focuses on incompressible single-discipline flows, with a vectorial source-
term being superimposed to the momentum equations. The process of transition from topology to shape
optimization is presented in section III for 3D internal flows. Finally, in section IV an exemplary test case
is presented to showcase the transition process which allows topology and shape to be used in synergy, and
3D aerodynamic and multi-disciplinary optimization problems are tackled. All software used to produce the
work presented in this paper was programmed in OpenFOAM 2.3.1.

II. A General Continuous Adjoint Framework for Single-and
Multi-Disciplinary Optimization

In this section, a continuous adjoint framework, generalized for both shape and topology optimization,
is presented in a unified way for incompressible fluid flow and CHT problems. To do so, a switch variable E
is introduced to distinguish between the cases in which only incompressible fluid flow is considered (E = 0)
and the CHT ones (E = 1). In the latter, additional PDEs describing the heat transfer over the fluid and
solid regions are solved along with the flow equations.

A. Formulation of the continuous adjoint method for shape optimization

Let Ω be the overall domain, consisting of either the (incompressible) fluid domain ΩF in single-disciplinary
flow problems or both ΩF and ΩS (the solid domain) in CHT problems. The derivation of the adjoint
equations, their corresponding boundary conditions and the sensitivity derivative (SD) expression starts by
defining the augmented objective function (presented here for laminar flows)

L=J +

∫
ΩF

uiRvidΩ +

∫
ΩF

qRpdΩ+E
∑

D=F,S

∫
ΩD

TDa R
D
T dΩ+λ

∑
D=F,ES

∫
ΩD

mD
a,iR

D
m.idΩ (1)

with the objective function being J = JF + JS , where F and S stand for fluid and solid respectively. JF is
assumed to be defined only along the boundary SF of ΩF , written in a general way as

JF =

∫
SF

JFS,inidS=

∫
SF,W

JFSW ,inidS+

∫
SF.O

JFSO,inidS (2)

where SF =SF,W ∪SF,O, SF,W is the solid wall, SF,O any other boundary of ΩF and ni the surface outward
unit normal vector. Also, JS is assumed to be defined only in the interior of ΩS , and is thus expressed as

JS=

∫
ΩS

JSΩdΩ (3)
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In addition to J , L includes the integrals of the residuals of the continuity (Rp), momentum (Rvi), heat
transfer over ΩF (RFT ), heat conduction over ΩS (RST ) and mesh movement (RDm,i, D = F, S) equations

Rp = − ∂vj
∂xj

= 0 (4a)

Rvi = vj
∂vi
∂xj
− ∂τij
∂xj

+
∂p

∂xi
+ fi(~v,~b) = 0 (4b)

RFT =ρF vjcp
∂TF

∂xj
+ ρF

vj
2

∂v2
k

∂xj
− ∂

∂xj

(
ρF cpaeff

∂TF

∂xj

)
=0 (4c)

RST =− ∂

∂xj

(
kS
∂TS

∂xj

)
=0 (4d)

RDm,i=
∂

∂xj

(
∂mD

i

∂xj

)
=0, D = F, S (4e)

multiplied by the adjoint pressure q, adjoint velocities ui, adjoint temperatures TFa , TSa (over ΩF , ΩS
respectively) fields and adjoint grid displacement fields mD

a,i, D = F, S respectively. Equations 4c and 4d
are solved only in CHT problems. In Eqs. 4a to 4c, p, vi, τij stand for the static pressure divided by the

constant density ρF , velocity and stress components (τij = νeff
(
∂vi
∂xj

+
∂vj
∂xi

)
, νeff = ν+νt, ν, νt stand for

the bulk and turbulent viscosities) respectively, whereas fi(~v,~b) represents any external force applied to
the fluid; such a term becomes active in topology optimization by setting the switch variable µ = 0 (see
section II.C). Regarding Eqs. 4c and 4d, the thermal diffusivity is αeff = α+αt, where α = ν/Pr and
αt = νt/Prt (Pr, Prt are the laminar and turbulent Prandtl numbers), TF and TS are the fluid and
solid temperatures, respectively, cp the specific heat transfer coefficient under constant pressure and kS the
thermal conductivity of the solid. Repeated indices imply summation. The coupling of Eqs. 4c and 4d is
performed along the Fluid-Solid Interfaces (FSI), seen from ΩF and ΩS as SF and SS respectively, through
the following conditions

kS
∂TS

∂n

∣∣∣∣
SS

= −kF ∂TF

∂n

∣∣∣∣
SF

(5)

TS
∣∣
SS

=TF
∣∣
SF

(6)

where kF =ρF cp(a + at). Throughout this paper, ν, ρF , cp, k
S , P r and Prt are assumed to be constant.

In addition, in Eq. 4e, mD
i (i = 1, 2(, 3)) stand for the Cartesian displacements of grid nodes of ΩF ,ΩS and

λ is a switch variable being equal either to unity or zero, depending on how the continuous adjoint method
for shape optimization problems is developed (see sections II.A.1, II.A.2, and II.A.3).

In shape optimization, where the design variables, bn, n ∈ [1, N ], affect the shape of S (S=SF ∪ ESS),
the continuous adjoint method has historically been formulated in two different ways, referred to as FI and
SI. This is an abbreviation introduced by the group of authors of this paper in a previous publication;10 in
a different terminology FI stands for the first continuous adjoint formulation presented in Ref. 20, whereas
SI , which was introduced later,3,7, 21 is known as the “reduced gradient” adjoint formulation. Both give the
same field adjoint equations and boundary conditions, yet different expressions for the gradient of J with
respect to (w.r.t.) bn. Recently, a new formulation referred to as the Enhanced-SI (E-SI)10 which combines
the advantages of both was developed. The mathematical formulation of each will be presented in sections
II.A.1, II.A.2, and II.A.3. If~b does not affect S, as is the case in topology optimization, there is no distinction
between the three formulations. Through the differentiation of Eq. 1 w.r.t. the design variables bn and the
standard way of developing the adjoint problems, the field adjoint equations can be derived; these can be
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written as follows:5,7, 10,22

Rq = −∂uj
∂xj

= 0 (7a)

Rui
= uj

∂vj
∂xi
− ∂(vjui)

∂xj
−
∂τaij
∂xj

+
∂q

∂xi
+ uk

∂fk(~v,~b)

∂vi

+ E
(
ρF cpT

F
a

∂TF

∂xi
+ ρFT

F
a vk

∂vk
∂xi
− ρF vivk

∂TFa
∂xk

)
= 0, i=1, 2(, 3) (7b)

RFTa
=−vj

∂TFa
∂xj

− ∂

∂xj

(
αeff

∂TFa
∂xj

)
= 0 (7c)

RSTa
=− ∂

∂xj

(
kS
∂TSa
∂xj

)
+
∂JSΩ
∂TS

= 0 (7d)

where τaij = νeff
(
∂ui

∂xj
+

∂uj

∂xi

)
is the adjoint stress tensor. Equations 7c and 7d are solved only in CHT

problems. A general sensitivity expression, incorporating all terms appearing in the three different adjoint
formulations (FI, SI, E-SI), is given by the following equation (for its derivation, see Refs. 5, 7, 10,22)

δJ

δbn
=µ

[
(1− γ)W1,n(E) + γW2,n(λ, E) +W3,n(γ, E)

]
+ (1− µ)W4,n (8)

where

W1,n(E)=

∫
ΩF

{
−uivj

∂vi
∂xk
−uj

∂p

∂xk
−τaij

∂vi
∂xk

+ui
∂τij
∂xk

+q
∂vj
∂xk

}
∂

∂xj

(
δxk
δbn

)
dΩ

+E
{∫

ΩF

ρF

[
−cpTFa vj

∂TF

∂xk
−TFa vjvi

∂vi
∂xk
−αeffcp

∂TFa
∂xj

∂TF

∂xk
+cpT

F
a

∂

∂xk

(
αeff

∂TF

∂xj

)]
∂

∂xj

(
δxk
δbn

)
dΩ

+

∫
ΩS

[
− kS ∂T

S
a

∂xj

∂TS

∂xk
+ kSTSa

∂2TS

∂xj∂xk

]
∂

∂xj

(
δxk
δbn

)
dΩ

}
(9)

W2,n(λ, E)=

∫
SF,W

[
−
(
τaijnj−qni+

∂JFSW,l

∂vi
nl

)
∂vi
∂xk

+
∂JFSW,i

∂xk
ni

]
δxk
δbn

dS−λ
∑

D=F,ES

(∫
SD,W

∂mD
a,k

∂xj
nj
δxk
δbn

dS

)

+E
{
−
∫
SS,D

kS
∂TSa
∂n

∂TS

∂xk

δxk
δbn

dS+

∫
SF,W∗

kFTFa
∂2TF

∂xj∂xk
nj
δxk
δbn

dS

+

∫
SF

[
TFa

(
kF

∂2TF

∂xj∂xk
−kS ∂2TS

∂xj∂xk

)
nj−kF

∂TFa
∂xj

nj

(
∂TF

∂xk
− ∂T

S

∂xk

)]
δxk
δbn

dS

}
(10)

W3,n(γ, E)=

∫
SF,W

JFSW,i

δ (nidS)

δbn
−
∫
SF,W

(
−uknk+

∂JFSW,k

∂τlz
nknlnz

)(
τij
δ(ninj)

δbn
+γ

∂τij
∂xk

δxk
δbn

ninj

)
dS

−
∫
SF,W

∂JFSW ,k

∂τlz
nkt

I
l t
I
z

(
τij
δ(tIi t

I
j )

δbn
+γ

∂τij
∂xk

δxk
δbn

tIi t
I
j

)
dS

−
∫
SF,W

(
∂JFSW ,k

∂τlz
nk(tIIl t

I
z + tIl t

II
z )

)(
τij
δ(tIIi t

I
j )

δbn
+γ

∂τij
∂xk

δxk
δbn

tIIi t
I
j

)
dS

−
∫
SF,W

∂JFSW ,k

∂τlz
nkt

II
l t

II
z

(
τij
δ(tIIi t

II
j )

δbn
+γ

∂τij
∂xk

δxk
δbn

tIIi t
II
j

)
dS

+E
{∫

SF,W∗

kFTFa
∂TF

∂xj

δnj
δbn

dS+

∫
SF

TFa

(
kF

∂TF

∂xj
−kS ∂T

S

∂xj

)
δnj
δbn

dS+

∫
SS,Fl

kSTSa
∂TS

∂xj

δnj
δbn

dS

}
(11)

W4,n=

∫
ΩF

ui
∂fi
∂bn

∣∣∣∣
~v=ct

dΩ (12)

In the above equations, JFSW ,k is the part of the objective defined on the wall boundary of ΩF (see

Eq. 2) and nj and tl, l=I, II the normal and tangent to the surface unit vectors, respectively. Also, SF,W∗
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corresponds to the non-FSI walls of ΩF and SS,F l, SS,D to boundaries of ΩS where constant heat-flux and
fixed temperature is imposed, respectively. The remainder of this section focuses on the way each of the
three sensitivity formulations is obtained.

1. The Field Integral (FI) Adjoint Formulation

The first formulation of the continuous adjoint method is known as the “Field Integral” adjoint formulation
(FI) as it leads to gradient expressions with field integrals including variations in the spatial coordinates ~x

w.r.t. ~b, a.k.a. grid sensitivities. To set-up the FI formulation, one should start from the total derivative of
L Eq. 1, which for λ=0 reads

δL

δbn
=
δJ

δbn
+

∫
ΩF

(
ui
δRv,i
δbn

+ q
δRp
δbn

+ ETFa
δRFT
δbn

)
dΩ + E

∫
ΩS

TSa
δRST
δbn

dΩ

+

∫
ΩF

(
uiRv,i + qRp + ETFa RFT

) δ(dΩ)

δbn
+E

∫
ΩS

TSa R
S
T

δ(dΩ)

δbn
(13)

where the last two integrals vanish since Rv,i =Rp =RFT =RST = 0 in ΩF and ΩS . By applying the chain

rule, the formula δ
δbn

(
∂Φ
∂xj

)
= ∂
∂xj

(
δΦ
δbn

)
− ∂Φ
∂xk

∂
∂xj

(
δxk

δbn

)
and the Green-Gauss theorem, the total derivatives

(symbol δ) of Rv,i, Rp, R
F
T , R

S
T w.r.t. bn are expanded, leading to a formula involving integrals of expressions

multiplied by δvi/δbn, δp/δbn, δT
F /δbn, and δTS/δbn. By zeroing those expressions in the volume integrals

of δL/δbn the field adjoint equations, Eqs. 7, for ΩF and ΩS are derived.10 The adjoint boundary conditions
arise by zeroing the expressions multiplying δp/δbn, δvi/δbn, δτij/δbn, δTF /δbn, and δTS/δbn in the surface
integrals of δL/δbn, where necessary.23 The remaining terms in δL/δbn yield the SD expression, which is
obtained through Eq. 8 by setting γ=λ= 0 and µ= 1. It should be noted that term W1,n, given by Eq. 9
and included in Eq. 8, requires the computation of δxk/δbn for the entire flow domain, in single-disciplinary
or in all domains in CHT problems. Two standard methods of computing the required grid sensitivities are
finite differences (FD) or direct differentiation (DD) of the grid displacement model, both of which have a
cost that scales linearly with the design variables number. Consequently, the FI adjoint method becomes
computationally expensive in problems with many design variables.

2. The Surface Integral (SI) Adjoint Formulation

The “Surface Integral” (SI) formulation of the continuous adjoint method (often referred to as the ”reduced-
gradient” method21) was developed later on as a more viable alternative. In contrast to the FI formulation,
this is based on the application of the Leibniz theorem (for domains the shape of which changes due to
variations in bn), in order to develop the total derivative of Eq. 1 (for λ = 0), leading to

δL

δbn
=
δJ

δbn
+

∫
ΩF

(
ui
∂Rv,i
∂bn

+q
∂Rp
∂bn

+ETFa
∂RFT
∂bn

)
dΩ+E

∫
ΩS

TSa
∂RST
∂bn

dΩ

+

∫
SF

(
uiRvi +qRp+ETFa RFT

)
nk
δxk
δbn

dS+E
∫
SS

TSa R
S
Tnk

δxk
δbn

dS (14)

where ∂/∂bn stands for the partial derivatives w.r.t. the design variables bn. The last two integrals in Eq. 14
are usually ignored7 by making the (unreliable; see below) assumption that the flow PDEs are satisfied along
the boundary, yielding a severed form of Eq. 14. The SI formulation leads to the same field adjoint equations
and boundary conditions as the FI one, but to a different SD expression; the latter containing only surface
integrals after setting the switch variables of Eq. 8 as γ=µ=1, λ=0. Thus, the aptly-named SI formulation
avoids the computation of grid sensitivities for the entire flow domain, being computationally cheaper than
FI for this reason.

3. The Enhanced-SI (E-SI) Adjoint Formulation

The main difference between the FI and SI formulations is that the W1,n term in Eq. 8 (the term containing
the spatial gradient of the grid sensitivities) is retained when using the FI formulation, which can be costly
to compute for a large N . On the other hand, SI though far less expensive than FI for problems with
many design variables, cannot guarantee accurate (or even correctly signed) SD due to the elimination of

5 of 22

American Institute of Aeronautics and Astronautics



last two integrals in Eq. 14. The “Enhanced-SI” (E-SI) adjoint formulation, as firstly proposed in Ref. 10,
intends to alleviate the accuracy issue of the SI formulation, while having almost the same low computational
cost. In other words, the E-SI combines the main advantages of the FI and SI formulations by avoiding
the computation of δxk/δbn at the internal nodes. This is achieved by extending the adjoint formulation
through considering grid displacement PDEs as extra governing equations (λ = 1 in Eq. 1); without loss in
generality, a Laplace-based grid displacement model is assumed (see Eq. 4e). In order to eliminate the field
integrals which include δxk/δbn in δL/δbn, the adjoint grid displacement PDEs arise

RFma,k=
∂2mF

a,k

∂x2
j

− ∂

∂xj

{
uivj

∂vi
∂xk

+ τaij
∂vi
∂xk
− ui

∂τij
∂xk

+ uj
∂p

∂xk
+ q

∂vj
∂xk

+ EρF
[
− cpTFa vj

∂TF

∂xk
− TFa vjvi

∂vi
∂xk
− αeffcp

∂TFa
∂xj

∂TF

∂xk
+ cpT

F
a

∂

∂xk

(
αeff

∂TF

∂xj

)]}
=0 (15a)

RSma,k
=
∂2mS

a,k

∂x2
j

− ∂

∂xj

(
kSTSa

∂2TS

∂xj∂xk
− kS ∂T

S
a

∂xj

∂TS

∂xk

)
+JSM,k=0 (15b)

and should be satisfied in addition to the adjoint mean-flow (and turbulence model: see section II.B) PDEs.
In Eq. 15b, JSM,k stands for the contributions of the differentiated JS to the adjoint grid displacement
equations of ΩS . After the appropriate mathematical development, the E-SI based SD is given by Eq. 8, by
setting µ= γ = λ= 1, including solely boundary integrals. The extra cost of computing SD using the E-SI
instead of the SI formulation stems from the numerical solution of the adjoint grid displacement equations,
Eqs. 15a and 15b, being negligible compared to that of solving the primal and adjoint PDEs. In addition,
the two major advantages of the SI formulation remain valid for E-SI, as it has: (a) cost-independence from
the number of design variables and (b) gradient computations based on surface integrals only. In table 1,
the switch variables used in Eq. 8 are summarized.

Shape Topology

µ 1 0

Fluid CHT

E 0 1

SI E-SI FI

γ 1 1 0

λ 0 1 0

Table 1. Values of switch variables E, µ, λ, γ.

In figures 1 and 2, the SD computed with the three different adjoint formulations are compared in an
internal and an external aerodynamics shape optimization problem, summarizing the merits of using the
E-SI formulation. Even if the above theory has been presented for laminar flows, both single-disciplinary
presented cases concern turbulent flows by also considering material that can be found in section II.B. In
figure 3, SD are computed for a CHT problem. This problem involves the laminar flow in an S-bend duct
attached to a solid body. It can be noticed that the SI adjoint provide, even for such a simple test case,
quite inaccurate sensitivities.

B. Continuous Adjoint to Turbulence Model PDEs

In the literature of continuous adjoint methods for turbulent flows, a standard practice in the majority of
published works is to assume “frozen turbulence”, i.e. to neglect variations in the turbulent viscosity as
if changes in the shape of the aerodynamic body affect only the mean flow quantities. This assumption
occasionally results in SD which are wrongly signed and, thereby, seriously affect the optimization process.
It is obvious, then, that a rigorous approach should include the differentiation of the turbulence model
equation(s) w.r.t. the design variables. This requires the formulation and solution of the adjoint to the
turbulence model PDEs, the continuous forms of which have been developed for three turbulence models;
Spalart–Allmaras,24 k-ε,25 and k-ω SST26 (see also Ref. 5).

If, for instance, it was assumed that closure is effected by the one-equation Spalart-Allmaras model,
the development of the adjoint SI formulation would begin by adding

∫
ΩF

ν̃aRν̃dΩ to the RHS of Eq. 1,
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Figure 1. Turbulent flow case in an S-bend duct (Re=105), using the k-ω SST model and targeting minimum
total pressure losses. (a) Duct geometry (not in scale) and parameterization using 24 Bézier–Bernstein control
points. (b) Total pressure losses SD w.r.t. the Bézier–Bernstein control point coordinates, computed using the
E-SI and SI formulations, in comparison with finite differences (FD), considered to give the “reference” SD
values. The first 24 points in the abscissa correspond to the control point x coordinates whereas the last 24
correspond to the y ones. The E-SI approach with full differentiation of the turbulence model coincides with
FD. It is interesting to note that the SI-based SD need to be divided by 50 in order to match the scale of the
correct SD. From Ref. 10.

where ν̃a is the adjoint to the turbulence model variable ν̃ and Rν̃ is the residual of the Spalart-Allmaras
equation. In the k-ε or the k-ω SST models, this new integral must be replaced by

∫
ΩF

kaRkdΩ+
∫

ΩF
εaRεdΩ

or
∫

ΩF
kaRkdΩ +

∫
ΩF

ωaRωdΩ respectively, where the computation of the new adjoint fields requires the

formulation and solution of extra PDEs. After zeroing the multipliers of δp/δbn, δvi/δbn, δTD/δbn, D = F, S
and δν̃/δbn (for the Spalart-Allmaras model), the adjoint PDEs arise. In the absence of field integrals in JF

and surface integrals in JS , the system of the adjoint PDEs, for the Spalart-Allmaras model, becomes

Rq=−∂uj
∂xj

= 0 (16a)

Rui
=uj

∂vj
∂xi
− ∂(vjui)

∂xj
−
∂τaij
∂xj

+
∂q

∂xi
+EρF

[
cpT

F
a

∂TF

∂xi
+TFa vk

∂vk
∂xi
−vivk

∂TFa
∂xk

]
+uk

∂fk
∂vi

+AMSi=0 , i=1, 2(, 3) (16b)

RTa

F =−vj
∂TFa
∂xj

− ∂

∂xj

(
αeff

∂TFa
∂xj

)
=0 (16c)

RTa

S =− ∂

∂xj

(
kS
∂TSa
∂xj

)
+ JSΩ =0 (16d)

Rν̃a =−∂(vj ν̃a)

∂xj
− ∂

∂xj

[(
ν+ν̃

σ

)
∂ν̃a
∂xj

]
+

1

σ

∂ν̃a
∂xj

∂ν̃

∂xj
+ 2

cb2
σ

∂

∂xj

(
ν̃a

∂ν̃

∂xj

)
+ ν̃aν̃Cν̃+

∂νt
∂ν̃

∂ui
∂xj

(
∂vi
∂xj

+
∂vj
∂xi

)
+ (−P (ν̃)+D(ν̃)) ν̃a + ν̃a

∂f ν̃

∂ν̃
+ EρF

cp
Prt

∂TFa
∂xj

∂TF

∂xj

∂νt
∂ν̃

=0 (16e)

where P (ν̃) and D(ν̃) are the production and dissipation terms of the model and f ν̃ is an extra term
emerging from possible source terms in Rν̃ including ν̃ (as in the case of topology optimization, see section
II.C). Among other variables, D(ν̃) depends on the distance ∆ from the wall. The extra terms contained in
the AMSi term in eq. 16b arise from the differentiation of the turbulence model23,24 and would not exist
if the “frozen turbulence” assumption was made; the same holds for the last term in Eq. 16e. The adjoint
boundary conditions are derived by properly treating the boundary integrals that depend on variations in the
flow variables. In the E-SI adjoint formulation, the adjoint grid displacement equations should additionally
be solved as explained in section II.A.3.

Additional terms also arise in the SD expressions. For instance, following the SI formulation, the term

TMT =
∫
SF,W

[
−
(
ν+ ν̃

σ

)
∂ν̃a
∂xj

nj+
∂JSm

∂ν̃ nm

]
∂ν̃
∂xk

δxk

δbn
dS should be added to the RHS of Eq. 8, and additional
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Figure 2. Turbulent flow around the NACA0012 airfoil (Re=106, a∞=3o, average y+ =0.2 along the wall). (a)
Airfoil geometry (not in scale) parameterized with 24 control points. (b) Comparison of the lift SD computed
by the FI, SI, E-SI and FD methods. SD are computed w.r.t. the x (first half points in the abscissa) and y
(second half) coordinates of 24 control points parameterizing the pressure and suction sides. The SI results
have been divided by 10 in order to be on the same scale with those of the other methods. All adjoint variants
presented include the differentiation of the turbulence model, see sectionII.B. Similarly to the previous case,
figure 1, the SI−based SD differ considerably from FD and have the wrong sign for almost all design variables.
In contrast, the E-SI approach computes the reference SD values. From Ref. 10.
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Figure 3. A CHT example: Laminar flow in an S-Bend 2D duct (Re=40), attached to a solid body. Minimization
of the mean temperature over the solid domain ΩS . (a) The fluid (ΩF ) and solid (ΩS) domains along with the
parameterized patch (red line). A NURBS curve with 12 control points is used to parameterize this part of
the FSI, the x and y coordinates of which act as the design variables. (b) Comparison of SD computed with
the FI, E-SI, SI adjoint and FD. It can be observed that even in this very simple example, the SI approach
computes the wrong SD, which are an order of magnitude off and have the wrong sign for almost all design
variables.

terms similarly need to be added to Eq. 15a if the E-SI approach is used. To account for the differentiation
of the distance ∆ from the wall, i.e. to take into consideration δ∆/δbn, the Hamilton-Jacobi equation (

R∆ =
∂(cj∆)
∂xj

−∆∂2∆
∂x2

j
−1=0, where cj =∂∆/∂xj ) is used as the PDE governing ∆.5,27 Then, L is extended

by adding
∫

ΩF
∆aR∆dΩ in Eq. 1 and a new adjoint PDE, in the form of R∆a =−2 ∂

∂xj

(
∆a

∂∆
∂xj

)
+ν̃ν̃aC∆ =0,

for the adjoint distance ∆a, is derived and solved. In such a case, term TMT is further expanded by the

integral
∫
SF,W

(
−2∆a

∂∆
∂xj

nj
∂∆
∂xk

+∆aR∆nk

)
δxk

δbn
dS. A convincing example demonstrating the need of solving

the adjoint turbulence model equations can be found in figure 4.
A second example is presented in figure 5. It is about a similar CHT problem to the one presented

in figure 3; however, here, the flow in the S-bend duct is turbulent (Re = 104). The objective here is to
minimize the part of the solid domain which has a temperature above a critical threshold, Tcrit. To allow
the mathematical formulation of the adjoint problem with such a non-differentiable objective, the latter is
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(a) (b)

Figure 4. Drag sensitivities for the NACA4412 isolated airfoil; the flow is turbulent (Re= 1.5 × 106, a∞= 0o).
A grid with 60000 cells is used, with an average y+ value of the first cell centers off the wall of 0.03. Adjoint to
the low-Re Spalart–Allmaras model: Left: velocity magnitude field. A volumetric B-Splines morpher is used
to parameterize the airfoil. The control grid of the morpher is plotted on top of the airfoil, along with the ID
of each control point. Blue control points are kept fixed and only the red ones are allowed to move. Right:
drag SD w.r.t. the y displacements of the control points. Three SD distributions are compared, corresponding
to the “turbulent adjoint”, the adjoint approach making the “frozen turbulence” assumption and FD. The
abscissa stands for the control point IDs. Note that by making the “frozen turbulence” assumption, wrongly
signed SD are computed for control points 43 to 45 and 61 to 64. From Ref. 28.
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Figure 5. CHT problem: Turbulent flow in an S-Bend 2D duct (Re=104, Pr = 0.1), attached to a solid body.
Minimization of JmaxT , Eq. 17, over the solid domain ΩS . Comparison of SD computed with FI, E-SI, SI
and FD methods. It can be observed that the SI approach computes the wrong SD, which are two orders of
magnitude off and have an erroneous sign for almost all design variables.

approximated by the following sigmoid function defined in the interior of ΩS

JS=JmaxT =

∫
ΩS

[
1− 1

1+ek2(TS−Tcrit)+k1

]
dΩ∫

ΩS
dΩ

(17)

where k1 = log
(

1
1−fmax

−1
)
, k2 =

log
(

1
1−fmim

−1
)
−k1

Tsafe−Tcrit
.

C. Topology Optimization

Topology optimization introduces a vectorial source term into the RHS of the momentum equations (in the

form of the external force term fi(~v,~b) in Eq. 4) which contains a scalar design variable for each grid cell and
is controlled to minimize an objective function; the form of the additional source term varies depending on
the topological approach utilized.14,15 The topological approach of this paper employs the level set method29

and therefore defines the design variable in each grid cell as the value of the level set signed-distance field (φ)
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which maps the moving interface Γ between the solid and fluid topological domains. Thus, JF is minimized by
computing the optimal location of Γ. The source term has a continuously differentiable, piecewise sigmoidal
Heaviside relationship H to φ and is scaled by a user-defined constant CMAX , i.e. fi(~v,~b)=CMAXH(φ)vi in
Eq. 4. For a cell m, if H(φm) approaches 1, the source term becomes dominant, forcing the velocity toward
zero and effectively obstructing flow in that cell. Conversely, if H(φm) approaches 0, the flow is uninhibited.
The differentiation of the force term leads to the following expression for the last term on the RHS of Eq. 7b,

uk
∂fk(~v,~b)

∂vi
= CMAXH(φ)ui (18)

The SD w.r.t. each computational cell m’s design variable φm are given by Eq. 8, for which W1,m =
W2,m=W3,m=0 since the mesh node positions are kept fixed and W4,m is defined as

W4,m =

∫
Ω

CMAX
∂H(φ)

∂φm
viuidΩ = CMAXD(φm)vmi u

m
i Ωm (19)

where the scaled Heaviside function H(φ) and its derivative D(φ) depend only on the m-th grid cell with
volume Ωm associated with the discrete description of the domain. To move Γ toward the optimal solution,
the level set field is subjected to a process of convection by solving what is practically a steepest-descent
step for the φ field and applying eq. (19) as the convection velocity. Elaboration on the level set process as
a whole is found in Ref. 19.

III. Transition from Topology to Shape Optimization

This section deals with the synergistic use of 3D topology and shape optimization. Topology optimization
is commonly employed in fluid mechanics to develop optimal internal-flow paths between topologically-
ambiguous inlets and outlets, but itself produces solutions which are not CAD-compatible. In contrast,
shape optimization may only alter boundaries of known connectivity within a geometry to search for an
optimal solution, but uses far fewer design variables than topology and is inherently CAD-compatible if the
parameters of the CAD model are used as the design variables. In addition, and unlike topology optimization,
shape imposes proper boundary conditions, thus leading to a more physically accurate solution, especially
if turbulent effects are being considered. By using the two methods in a synergistic manner, the drawbacks
of both can be avoided: topology optimization can be employed to define a topologically correct set of
inlet-outlet connections, and then shape optimization can be used to find a CAD-compatible solution which
respects the proper boundary conditions. To achieve this synergistic optimization, a transition process for
3D geometries (developed in 2D in Ref. 19 and referred to as the TtoST -Topology to Shape Transition-
process) is employed. The TtoST process is exemplified through a test case in section IV.A.

In this work, the implemented process of shape optimization takes parameterized NURBS surfaces as
inputs in order to build an initial computational grid with a parameterized boundary. Thus, the goal of
the TtoST process is to automatically generate and fit, as closely and efficiently as possible, NURBS to the
optimal Γ found by topology. As discussed in section II.C, the topology process employed in this paper is
level set based, meaning that Γ is the 0-level set of the optimal signed-distance field φ. However, it should
be noted that the solution to any topology optimization method could just as easily define Γ.

In preparation for the following explanation of the TtoST process, some terminology should first be
defined. For the remainder of this paper, data associated with Γ will be referred to in the context of an
‘iso-surface’ and will thus be prefixed with ‘iso’ and capitalized. The isoSurface has three main domains:
source, design and fixed. The source domain pertains to any inlet or outlet boundaries in a case’s geometry.
It is considered important to capture these aspects of a case to high precision as they help define the design
space. Thus, they act as the origin from which much of the TtoST process’ data are built. Points on the
isoSurface in the source domain are found by boundary face-centers of the topology optimization case. The
design domain pertains specifically to Γ or fluidized design walls. Thus, points of the isoSurface pertaining to
the design domain are found through interpolation of Γ. Finally, the fixed domain pertains to any portions
of the case which are walls excluded from the design space, such as entry channels. IsoSurface points of the
fixed domain are also found via boundary face-centers of the topology optimization case. The TtoST process
can be broken into two main steps: Γ sub-division and NURBS Initialization.

10 of 22

American Institute of Aeronautics and Astronautics



A. IsoSurface (Γ) Sub-Division

As the second half of the TtoST process (see section III.B) seeks to initialize NURBS surfaces via least-
squares to represent the isoSurface, the first half seeks to provide the target information each NURBS
surface requires for such an initialization. The sub-division algorithm thus partitions the isoSurface into
discrete and contiguous areas dubbed ‘isoPatches’ which consist of both internal points and sets of bounding
points called ‘facets’. Due to the mathematics of NURBS surfaces, we choose to require each isoPatch obeys
the following criteria: (a) its internal and bounding isoSurface points are ordered; (b) each of its facets is
shared with exactly one other isoPatch; (c) it has exactly four facets (as each NURBS surface has four sides);
(d) it cannot represent more than one type of isoSurface domain.

The first major step in the sub-division process is to order the points of the isoSurface: doing this both
allows for algorithmic simplicity and addresses isoPatch criterion (a). Through the known connectivity of
the original case mesh, an unstructured surface-mesh referred to as the ‘isoMesh’ is built from the raw
isoSurface data. The isoMesh initiates from the set of bounding contours of the source domains, meaning
that the shape of all inlets and outlets is captured exactly. Point, face, and edge construction of the isoMesh
then propagates out from the source domain limits until all isoSurface information is accounted for. During
this construction, knowledge of what portions of the isoMesh pertain to which isoSurface domains is retained.

Each domain of the isoSurface can be considered as a 2-manifold Σ, i.e. a real R2 coordinate space
embedded in R3 (for more on manifold theory, see Ref. 30). 2-manifolds have two main traits: a genus g
which denotes how many holes exist in the manifold and a number of boundaries k. Thus, 2-manifolds are
denoted Σg.k, and various examples of such manifolds can be seen in figure 6. As the goal of the sub-division
process is to represent the isoSurface with a set of isoPatch manifolds Σ0,1, it is integral that the topological
traits of each of these inter-connected 2-manifolds be assessed.

Figure 6. Examples of 2-manifolds with genus g and number of boundaries k denoted as Σg.k.

The number of boundaries of each isoSurface domain 2-manifold is known a-priori based on how the
isoMesh was constructed. However, the genus of these manifolds is not known in this way and must be
mapped to find holes, bifurcations, and junctions (if any). This is done by first building a Morse function31

on the manifold’s surface. A Morse function is a real-valued function defined on a compact smooth manifold,
and is chosen based on application.32 For the work presented in this paper, the Laplace equation was
selected as the Morse function. The Morse function is used to construct a Reeb graph,33 which is a map
of the topological change in the Morse function’s iso-contours. The Reeb graph construction process used
is similar to that of Ref. 34, except it applies to surface meshes with varying types of elements, not just
triangulated ones.

Using the information provided by the Reeb graph, each domain’s 2-manifold is broken into sub-manifolds
such that all sub-manifolds have no holes (g = 0). One sub-manifold boundary (k = 0) is chosen as a base
and the sub-manifold is cut between k = 0 and all other k. making each sub-manifold of Σ0,1 topology. The
edge of each sub-manifold is then broken into an even number of facets such that the facets of all touching
sub-manifolds coincide, thereby making the sub-manifold an isoPatch. An example of this process can be
seen for a 2-manifold in figure 7. These even-faceted sub-manifold isoPatches are subsequently internally
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divided until all they have four sides, i.e. facets, and thus become ‘final’ isoPatches. Thus, all final isoPatches
have criteria (b), (c), and (d) satisfied and the first major step in the TtoST process is complete.

Figure 7. An example of sub-division of a Σ1,2 2-manifold. (a) The initial manifold: knowledge and location of
the topological hole comes from Reeb-graph analysis (not shown). (b) The breaking of the original manifold
into Σ0,X (here, X turns out to be 3) sub-manifolds via division across the topological hole. (c) Cutting of the
Σ0,X sub-manifolds so that they become Σ0,1 2-manifolds. (d) The resulting isoPatches (both are identical)
with 8 facets.

B. IsoSurface NURBS Surface Initialization

The second major step is to initialize the set of NURBS surfaces which will represent the set of found
isoPatches, and thus the entire isoSurface. NURBS surfaces have two parametric values, ru and rv, which
range from 0 to 1, with a basis function associated with each. Thus a surface has four sides, each of which
has one parameter fixed while the other increases between 0 and 1. Additionally, each basis function of a
NURBS surface has a degree and a number of control points associated with it. Since we desire our NURBS
surface set to be contiguous, each side of the NURBS surface should exactly match some other side of another
surface, leading to the following requirements: the degree and number of control points of the basis functions
should be the same for all surfaces, and the parametric velocity of the increasing parameter along each
NURBS side should match that of the neighboring surface. We meet these requirements by building a set
of NURBS curves, each of which represents a shared NURBS surface edge, and using those curves to supply
the ru or rv data, as well as the degree and number of control points for that side of the sharing surfaces.
Each curve has the same degree and number of control points. The curves are initialized via least-squares,
with their target data being the points of a facet. Thus, a set of isoPatch facets-linkings termed ‘isoSeams’
is chosen as a target net for initializing these NURBS curves such that each pair of linked isoPatch facets is
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represented once.
All NURBS surfaces are initialized simultaneously by solving a constrained least squares system to find

the control point positions which minimize the squared error of the surfaces’ positions w.r.t. the system’s
target information. To do this, the points of the isoMesh belonging to each isoPatch must be given ru
and rv parametric values. This is done by solving a Laplace equation on the isoPatch in both ru and rv.
The goal of an unconstrained least-squares problem would be to get the NURBS surfaces to represent these
parameterized points as closely as possible. However, solving this simple system would result in surfaces
which would not be contiguous. Thus, constraints of coinciding interface control points are added to the least
squares system through the method of augmented Lagrange multipliers such that all surface edges remain
in contact. Similarly, for those NURBS surfaces which represent the isoSurface’s design domain, additional
targets are added to the least squares system which desire to enforce G1 continuity between interfacing
surfaces. Once all NURBS surfaces are initialized, they can be used to build a parameterized surface mesh
and finite-volume computational mesh from which shape optimization can begin.

IV. Applications

A. Synergistic Optimization Example: Transition of a Straight Tube

This section uses a topologically-simple case to exemplify the TtoST process which allows synergistic
topology-shape optimization. The presented case has one inlet and outlet and entry channels which al-
low boundary-layer formation between them and the design domain. The inlet velocity profile is uniform

such that the Reynolds number is 500. The kinematic viscosity is that of air (1.5× 10−5m2

s ). The objective
function to be minimized is the volume-averaged total pressure losses between the inlet SFI

and outlet SFO

and is given by

JF = Jpt = −
∫
SF,I

(
p+

1

2
v2
k

)
vinidS −

∫
SF,O

(
p+

1

2
v2
k

)
vinidS (20)

where ni are the components of the outward (from the fluid to boundary) normal vector.
The initial geometry and level set topology solution Γ can be seen in figure 8(a). The TtoST process

begins by assessing this solution to form an isoSurface, finding source, fixed, and design domains which will
be respected as separate during the sub-division of the isoSurface. The isoMesh, shown in figure 8(b), is
built across the isoSurface from the bounding contours of the source domains and retains the domains of the
isoSurface. Once the isoMesh has been built, 2-manifolds are constructed which represent each individual
domain and a Reeb-graph analysis is performed on each manifold to check for topological holes or bifurcations.
The Laplace Morse functions built on the 2-manifolds’ surfaces, as well as the Reeb graphs themselves, are
found in figure 8(c). As no holes or bifurcations exist in the tube or its entrance channels, subdivision
proceeds, resulting in the isoSurface being divided into 14 isoPatches: one for each inlet and outlet, four for
each entrance channel and four for the design domain. The points of each patch are given the parametric
values ru or rv required to initialize their NURBS surfaces with least-squares. The parameterized isoPatches
which make up the isoSurface can be seen in figures 8(d) and 8(e). Using the parameterized isoPatch set
as a source, the set of NURBS surfaces which will represent the isoSurface and be used to initialize shape
optimization is initialized using least squares. Each surface is initialized with 8 control points in both
parametric directions and a degree of 5. The initialized surfaces, overlaid with the outlines of their target
isoPatches, as well as their control point nets, can be found in figure 8(f).

Starting from the set of parameterized NURBS surfaces depicted in figure 8(f), a body fitted mesh of
∼ 5 × 105 cells is constructed and used to conduct a shape optimization. The objective to be minimized is
JFpt with the constraint of continuous first-order derivatives along the interfaces, i.e.

CG1 =

ne∑
i=1

(
∂−→x i
∂w

∣∣∣∣
S1

− ∂−→x i
∂w

∣∣∣∣
S2

)2

(21)

where ne is the total number of interface points of the control surfaces, S1 and S2 are two adjacent NURBS
surfaces and w the parametric coordinate w.r.t. which derivative continuity has to be imposed. It should
be mentioned that G1 continuity along one of the parametric coordinates is ensured by construction, since
the boundary curves of the adjacent surfaces share the same control points. The constraint is treated as
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(a) (b)

(c) (d)

(e) (f)

Figure 8. TtoST of a tube: (a) The topological solution (i.e. isoSurface) of the tube case. The inlet and
outlet (not shown) of the topology case (i.e. the isoSurface’s source domain) are denoted in yellow, the entry
channels (i.e. the fixed domain) in blue, and Γ (i.e. the design domain) in red. The outer bounds of the source
domain are denoted with solid black lines. (b) The unstructured isoMesh which is built outward from the
source domain’s outer bounds using the geometry of the topology case. Portions of the isoMesh corresponding
to the source, fixed, and design domains are denoted as yellow, blue, and red, respectively. Each domain is
represented by a 2-manifold. (c) The Reeb-analysis of the 2-manifolds. The Laplacian Morse function varies
between 0 and 1 on each manifold and its iso-contours are tracked to build its Reeb graph: Black dots denote
Reeb nodes and blue lines denote Reeb arcs. The Reeb graphs’ structures are such that no topological variance
exists. (d and e) The parametric values assigned to the points of each isoPatch representing the isoSurface. (f)
The initialized degree 5 NURBS surfaces and their 8× 8 control point nets. Surfaces pertaining to the source,
fixed, and design domains of the isoSurface are denoted in yellow, blue, and red, respectively.

an equality one (CG1 = 0) and is imposed by using the SQP method.35 Only the control points of the
surfaces marked in red in figure 8(f) are allowed to vary, giving rise to an optimization problem with ∼ 570
design variables. The convergence of the objective and constraint functions are depicted in figure 9. A small
reduction of ∼ 0.5% is observed for JFpt ; this can be attributed to the fact that the initial geometry coming
from the TtoST process was already close to the optimal solution. On the contrary, the CG1 value has been
considerably reduced by ∼ 65%. The interface points/areas contributing to CG1 in the initial and optimized
geometries are shown in figure 10. A comparison between the initial and optimized geometries is given in
figure 11.
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Figure 9. Shape optimization of the straight tube: Convergence of the objective and constraint values, plotted
over the left and right axes, respectively. Both metrics are normalized on their respective initial values. Since
no line search was used and the initial geometry coming from the TtoST process was already close to the
optimal solution, the first optimization step overshot the minimum. However, the algorithm recovered in the
next steps, leading to a JF

pt
reduction of ∼ 0.5% and a CG1 reduction of ∼ 65%.

B. Shape Optimization: Lift-to-Drag Ratio Maximization for a Glider Plane

This section is concerned with the improvement of the aerodynamic design of an industrial glider flying at
high angles of attack. Its principal target is to reduce the separation occurring in the wing-fuselage junction
region of the original design of the Taurus Electro glider at high incidence angles using an adjoint-based
optimization algorithm. Such an optimization is performed by updating the local geometry of the fuselage
and fairing, maintaining the wing airfoil unchanged. The Taurus Electro glider, designed and manufactured
by Pipistrel d.o.o. Ajdovščina Slovenia, figure 12, is a two-seat electric self-launching ultra-light glider made
out of composite materials. The wing is located in a vertically central position w.r.t. the fuselage whilst its
longitudinal position is aft the maximum height section, behind the cockpit, in a positive pressure gradient
area. This configuration implies that, in the fuselage junction region, the wing suffers an extra increase
of flow velocity close to the leading edge and an increased adverse pressure gradient in the trailing edge
region that cause a leading edge separation at high angles of attack (AoA). Although the separation is not
critical and an ordinary pilot doesn’t fly in conditions when this happens, it is still interesting to explore
the occurrence. The target is to diminish the separation region and, consequently, enhance the aerodynamic
efficiency of the whole glider at these conditions. The optimization problem targets the maximization of the
lift-to-drag ratio or, equivalently, the minimization of

JF =JL/D=−
∫
SW

(−τijnj + pni) r
L
i dS∫

SW
(−τijnj + pni) rDi dS

(22)

where rL and rD are the lift and drag force projection (unit) directions, respectively. This case comes
from the RBF4AERO Project which aimed at developing the RBF4AERO Benchmark Technology and was
presented in Ref. 36. The flow Reynolds number is Re= 1.55 × 106 based on the wing chord, the Spalart–
Allmaras turbulence model is used, the mesh consists of about 4.7 million cells and the far-field flow angle
is 10o. The geometry is parameterized using four RBF-based design variables36,37 depicted in figure 13,
controlling the wing-fuselage junction close to the leading and trailing edges as well as parts of the upper
fuselage surface. The convergence of the steepest descent-driven algorithm can be found in figure 14(a). It
can be observed that the lift-to-drag ratio has increased by 15%, caused by 10% drag reduction and a 4% lift
increase. The optimized geometry is illustrated in figure 14(b). In figure 15, the near-wall velocity isolines
are plotted on the glider surface for the initial and optimized geometries. It can be observed that the flow
recirculation formed close to the trailing edge-fuselage junction has been significantly reduced.
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(a) (b)

(c) (d)

(e) (f)

(g) (h)

Figure 10. Shape optimization of the straight tube: Contribution of the interface points to the CG1 constraint
value, for the initial (left column) and optimized (right column) geometries, as seen from various viewpoints
(top-to-bottom). Gray areas correspond to zero contributions whereas purple ones to large contributions. In
most areas, the optimized geometry has a smoother G1 transition between surfaces than the initial one.

C. Shape Optimization: Car Engine Cylinder Head Cooling

In this section, the shape optimization of a simplified, internally cooled cylinder head of a car engine is
presented. The geometry (provided by Volkswagen AG), as seen in figure 16, consists of three groups of
boundaries; a) the outer rectangular surface (with light gray color) which is an adiabatic boundary, b) the
air-intake, the four cylinder-heads, and the four exhaust pipes (with dark grey color), which have constant
heat flux boundary conditions, and c) the cooling channels (whose surfaces are the FSI boundaries, colored
with purple) through which coolant flows in order to lower the temperature of the cylinder head. The
flow of the coolant (Eqs. 4a to 4c) is solved in the region inside the pipe with purple color, whereas the
heat conduction PDE (Eq. 4d) is solved for the region between the outer surface and the boundaries of the
air-intake manifold, the cylinder heads and the exhaust pipes. The coolant flow is turbulent (the Spalart-
Allmaras turbulence model is used) and the non-FSI wall boundaries of the fluid domain are assumed to be
adiabatic.

The objective function to be minimized is defined over ΩS and is a modified version of Eq. 17, given by
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(a)

(b) (c) (d) (e)

(f) (g) (h) (i)

Figure 11. Shape optimization of the straight tube: (a) Overlay of the parameterized parts of the initial
(gray) and optimized (red) geometries, along with the position of 8 slices. The slices are used to compare
cross sections (b to i, ordered from left to right) of the initial (black) and optimized (red) geometries. Flow
direction is from left to right. The main changes are observed in the first half of the duct.

Figure 12. The Taurus Electro glider.

the following continuously differentiable piecewise function

JS=JpenT =

JmaxT if TS ≤ Tcrit∫
ΩS

[α(TS−Tcrit)+β]dΩ∫
ΩS

dΩ
if T s > Tcrit

(23)
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(a) (b)

(c) (d)

Figure 13. Shape optimization of a glider: Minimization of the lift-to-drag ratio (L/D). The grid sensitivities
δxk/δbn on the surface of the glider (i.e. parameterization) are presented. δxk/δbn at the fuselage-wing junction
close to the leading and trailing edge are shown in (a) and (b) respectively. In (c) and (d), δxk/δbn on the front
and rear part of the fuselage are presented. The variation of the design variables is limited so that, after the
optimization, manufacturable solutions arise.
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Figure 14. Shape optimization of a glider: Minimization of the lift-to-drag ratio (L/D). In (a) the convergence
of the objective function is presented. A 15% lift-to-drag increase is observed after 4 optimization cycles by
mainly reducing the drag value and slightly increasing lift. In (b) the cumulative normal displacement of
the glider surface is plotted over the optimized geometry. The areas mostly changed are those close to the
wing-fuselage junction near the leading edge and at the top of the fuselage, where a maximum displacement
of 14.1 cm arisen after the optimization.

where α= k2e
k1

(1+ek1 )2 , β= ek1

1+ek1
and k1 and k2 are constants as in Eq. 17.

The parameterization of the geometry can be seen in figure 17. After 8 optimization cycles, the objective
function has dropped by 16.21%. In figure 18, the initial and optimized geometries are presented, whereas
the temperature distribution along the FSI at the initial and optimized geometry are depicted in figure 19.
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(a) (b)

Figure 15. Shape optimization of a glider: Minimization of the lift-to-drag ratio (L/D). The near wall velocity,
plotted over the initial (a) and optimized (b) geometry are presented.

(a) (b)

Figure 16. Cooled cylinder head of a car engine. Front (a) and rear (b) view of the geometry. The outer
rectangular surface is an adiabatic boundary (light gray color), whereas constant heat flux is imposed along
the air-intake manifold, the four cylinder heads and the exhaust pipe (dark gray). Along the FSI boundary,
Eqs. 5 and 6 hold (purple). The coolant enters from the left of the lower horizontal pipe (a) and exits from
the left of the upper horizontal pipe. The two other ends of the lower and upper horizontal pipes, are closed
adiabatic boundaries.

Figure 17. Cooled cylinder head of a car engine. Parameterization of the geometry using five sets of 4× 4× 6
control boxes that parameterize each of the five curved ducts connecting the two horizontal ducts.

Out of the five curved ducts connecting the horizontal ones, the optimization algorithm chose to mainly
deform the three central ones. The area with the highest deformation in all curved ducts is that with the
highest curvature. There, the cross-section area of the pipes became smaller, leading to a higher velocity
magnitude and a locally increased head conduction.
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(a) (b)

Figure 18. Cooled cylinder head of a car engine. Minimization of JpenT . Initial (a) and optimized (b)
geometries. The areas mostly changed after the optimization are those with the highest curvature on the
curved ducts connecting the two horizontal ones.

(a) (b)

Figure 19. Cooled cylinder head of a car engine. Minimization of JpenT . Distribution of temperature along
the FSI boundary at the initial (a) and optimized (b) geometries.

V. Conclusion

A general framework for the continuous adjoint method was presented, in which the Enhanced Surface
Integral (E-SI) formulation was shown to generate accurate sensitivity derivatives at low computational cost
as it consists entirely of surface integrals and avoids the computation of grid sensitivities in the interior of the
computational domain. Additionally, the turbulence model PDEs were differentiated in order to overcome
the “frozen turbulence assumption,” leading to accurate sensitivity derivatives computation. In this general
framework, a level set topology formulation was also defined. Though fundamentally different methods,
3D topology and shape optimization were considered in a novel, synergistic framework in which topology
optimization solutions are processed in order to refine them. This transitional ‘TtoST’ approach allows
any topological ambiguities in a case to be rectified, while still producing an accurate and CAD-compatible
solution with proper boundary conditions. The 3D TtoST method was demonstrated to minimize the volume-
averaged total pressure losses of a tube geometry, with shape improving the solution topology found. Shape
optimization was performed to maximize the lift-to-drag ratio of a glider plane in which the E-SI method
and the differentiated Spalart-Allmaras turbulence model were used produce accurate sensitivities. Finally,
the E-SI method and differentiated Spalart-Allmaras turbulence model were applied to a shape optimization
of a conjugate heat transfer problem in which the solid area of a cooled cylinder head with temperature
above a critical value was minimized.
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