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Abstract

This paper is on the development of the unsteady continuous adjoint method
associated with a flow solver based on the cut-cell method to be used for the
optimization of a diaphragm pump. A key feature of this pump is the oscillating
diaphragm which can properly be handled by the cut-cell method on a stationary
Cartesian grid, dynamically adapted to the moving diaphragm. In both the flow
and adjoint solvers, emphasis is laid on the proper treatment of cells that appear
in or disappear from the fluid domain, due to the motion of the diaphragm.
The continuous adjoint method is implemented to compute the derivatives of
an integral measuring the backflow along the outlet with respect to parameters
controlling the shape of the stationary part of the pump.

In the second part of this paper, the developed adjoint method is used for the
shape optimization of the same pump under uncertainties. For the quantification
of uncertainties, the non-intrusive Polynomial Chaos Expansion (PCE) method
is used. The new objective function includes the mean value and the standard
deviation of the quantity of interest used as objective function in the previous
optimization without uncertainties. The adjoint solver for the case without
uncertainties is also used for the gradient computation at the Gauss quadrature
nodes, in the presence of uncertainties.

Keywords: Diaphragm pumps, Uncertainty Quantification, Polynomial Chaos
Expansion, Cut-Cell Method, Continuous Adjoint Method

1. Introduction

This paper presents the shape optimization without and with uncertainties
of a diaphragm pump [1], the main characteristic of which is the lack of rotating
parts. Instead, its operation is based on the periodic motion of a diaphragm
which is the driving force of the passing flow. Depending on the geometry and5

the diaphragm motion characteristics, these pumps often suffer from undesirable
backflow at the exit, during a percentage of their period; the purpose of this
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paper is to minimize and, hopefully, reduce backflow by redesigning the ducts
of such a pump.

A prerequisite for the optimization process is the numerical simulation of the10

flow. Several methods to cope with the numerical simulation of time-dependent
flows involving moving boundaries, such as deforming grids [2], overset grids
[3], and immersed boundary methods (IBM) [4] can be found in the literature.
The first method makes use of body-fitted grids and, thus, needs costly grid
deformation processes to follow the boundary motion. On the other hand, with15

overset methods, the accurate application of the conservation laws calls for
complex interpolations of the flow quantities. The IBM, introduced by Peskin
[5], enjoy the advantages of Cartesian grids, i.e. simplicity in grid generation
and deformation. The cut-cell method [6, 7, 8] is one of the most popular
IBM methods which guarantees the satisfaction of the conservation laws. This20

is achieved by reshaping cells intersected by the solid boundary (cut-cells) by
discarding their part belonging to the solid body. In this paper, the cut-cell
method is developed and used for unsteady 2D laminar flows of incompressible
fluids such as those occurring in diaphragm pumps, allowing grid refinement
and dynamic adaptation.25

Uncertainties related to the operating conditions of the pump are also taken
into account. Uncertain variables are related to the inlet total pressure and
the outlet static pressure. The scope is to design a shape which performs effi-
ciently even with varying flow conditions. To this end, the objective function
is expressed as a linear combination of the mean value µF and the standard30

deviation σF of the quantity of interest (QoI). To compute these statistical mo-
ments, stochastic methods, such as Monte-Carlo (MC) [9], can be used at high
computational cost though. Much cheaper is the Method of Moments which
uses the adjoint method to compute the first- and second-order derivatives of
the QoI with respect to (w.r.t.) the uncertain variables, in terms of which the35

statistical moments are expressed [10].
Herein, the PCE technique [11, 12] is used for the same computation. The

method can be implemented intrusively (by deriving and solving new partial
differential equations) or non-intrusively. In the latter, which is used in this
paper, the Gauss integration rules determine a set of Gaussian nodes to be40

evaluated on the CFD solver. Then, the statistical moments are computed as
the weighted sum of the computed QoI values at these nodes.

To perform the optimization, the continuous adjoint method [13] computes
the derivatives of the QoI which is an outlet backflow metric w.r.t. the design
variables controlling the pump shape. The derivation of the adjoint problem is45

presented in detail. Similarly to the flow equations, the cut-cell method is used
to solve the adjoint equations. A combination of the adjoint method and the
non-intrusive PCE technique is used to compute the derivatives of the objective
function under uncertainties (being equal to the weighted sum of QoI at selected
operating points) w.r.t. the design variables.50
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2. Grid Generation for the Cut-Cell Method

The generation of the computational grid for the cut-cell method [8] is based
on the quad-tree data structure for minimum computational cost and memory
usage [14]. For each cell, a unique pair of integers (i, j) is given, facilitating
the computation of geometric quantities, such as cell volumes and barycentric55

coordinates. Starting from a single cell containing the whole domain, each
cell cut by the geometry is subdivided into four quadrants, until some stopping
criteria be met. During the grid generation process, the volume of all cells should
be kept between user-defined upper and lower bounds. A key rule is that cell
faces cannot have more than two neighbors. This rule prevents the formation60

of neighboring cells differing a lot in size, to avoid numerical instabilities. Two
additional rules should be also satisfied: each edge can be intersected only once
by the solid wall and cells are not allowed to have all of their edges intersected by
the wall. By following these rules and after discarding the grid laying on the solid
domain, cut-cells belonging to the fluid domain can be triangles, quadrilaterals65

or pentagons.
In order to increase the accuracy of the unsteady flow simulation around

moving solid bodies, the grid must continuously be adapted close to the changing
boundaries. Each time the boundary moves to its new position, cells close to
the previous boundary position with area smaller than a threshold value are70

merged with their neighbors. Starting from the just coarsened grid, cells are
re-subdivided in the vicinity of the displaced wall. Since different grids are used
per time-step, the flow solution is transferred from the old to the new grid.
During refinement, a 2D cell is decomposed into four smaller cells and each of
them takes on the velocity values of its predecessor. During coarsening, four75

cells are merged to form a single new cell, the velocity values of which are equal
to the average of the values of the four cells, weighted by their volumes. More
details about grid generation and adaptation can be found in [8].

3. Flow Equations and Discretization

Using the pseudo-compressibility method [15, 16], the Navier-Stokes equa-
tions for unsteady (t is the real time) 2D laminar flows of incompressible fluids
are written, using the Einstein notation, as

Γ−1
ij

∂Vj
∂τ

+
∂Ui
∂t

+
∂f invik

∂xk
− ∂fvisik

∂xk︸ ︷︷ ︸
Ri

= 0, i = 1, 3 (1)

where k = 1, 2 refers to the Cartesian directions; (x1, x2) stand for (x, y) and

(u1, u2) to the corresponding Cartesian velocity components. ~V =
[
p u1 u2

]T
,

~U =
[
0 u1 u2

]T
, ~f invk =

[
uk u1uk + pδ1

k u2uk + pδ2
k

]T
, ~fvisk =

[
0 τ1k τ2k

]T
,

where δji is the Kronecker symbol, p is the pressure divided by the density, τ is
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the pseudo-time, τik=ν( ∂ui

∂xk
+ ∂uk

∂xi
), Ri is the non-preconditioned instantaneous

residual of the equation and

Γ =

β2 0 0
u1 1 0
u2 0 1


is the preconditioning matrix, where β is the pseudo-compressibility coefficient.80

The discretization of eqs. (1) is based on the cell-centered finite volume scheme.
For cells intersected by the geometry, the integration volume consists of the cell
part which lies in the fluid domain.

The integration of eqs. 1 over a finite volume Ω, at time-step k+1, yields∫
Ωk+1

(
Γ−1
ij

∂Vj
∂τ

+
∂Ui
∂t

)
dΩ +

∫
Sk+1

(f invik − fvisik )nk dS = 0 (2)

where Sk+1 is the cell boundary and ~n its normal unit vector. The discretization
of eqs. 2 is based on the MUSCL supported by the Roe [17] scheme.85

The discretization of the ”physical” time derivative of eqs. 2, should take the
solid wall motion into account, due to which cells change in shape or occasionally
migrate from the fluid to the solid domain and vice-versa. In all these cases,
the following discretization, based on the Reynolds theorem,∫

Ωk+1

∂Ui
∂t

dΩ ' Uk+1
i − Uki

∆t
Ωk+1 (3)

is applied, where uw,n is the wall normal velocity, computed in a way ensuring
the satisfaction of the geometric conservation law. It is reminded that, for
each cell, only one face is allowed to move. For cells belonging to the solid
domain at tk and the fluid domain at tk+1, Ωk = 0 in eq. 3. Fluid cells at
tk becoming entirely solid at tk+1 should merge their conservative values with90

those of neighboring cells, which remain fluid. An extra term (
∑
solid U

k
i Ωk),

with summation over all solidified cells embodied in them, is added to eq. 3.

4. Adjoint Equations and Discretization

The purpose of the optimization of the diaphragm pump without uncertain-
ties is to minimize, or even suppress, backflow occurring instantaneously in the
exit duct. Subsequently, the space-time integral of the sign of the normal to
the outlet velocity should be maximized, in the sense that the entire exit should
have the same (outgoing) velocity sign. Assuming that the normal to the pump
outlet (SO) is ~n= (1, 0), the objective function F (which becomes the QoI in
the presence of uncertainties) is defined by the differentiable integral

F =

T∫
0

∫
SO

u1√
u2

1 + α
dSdt (4)
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where T is the period of the diaphragm motion and α is an infinitesimally small
number. The coordinates of the polygon vertices creating the upstream and
downstream ducts of the main body of the pump are the design variables (bm)
of the optimization, fig. 1. The derivatives of F are computed by defining an

augmented objective function Faug = F +

T∫
0

∫
Ω

ΨiRi(~V )dΩdt, where Ψi, i=1, 3

are the adjoint variable fields and Ω the whole domain covered by the fluid. By
differentiating Faug w.r.t. bm and setting the multipliers of ~V variations in the
space-time integrals equal to zero, the unsteady adjoint equations

Γ−1
ji

∂Ψj

∂τ
− ∂Ψ̄i

∂t
−Ajik

∂Ψj

∂xk
− ∂

∂xk
fA,visik = 0 (5)

arise where ~̄Ψ=
[
0 Ψ2 Ψ3

]T
, ~fA,visk =

[
0 τA1k τA2k

]T
, and τAik = ν

(
∂Ψi+1

∂xk
+ ∂Ψk+1

∂xi

)
.

The pseudo-time term is artificially added in eq. 5 for numerical stability reasons.95

By setting the adjoint velocity components (Ψ2, Ψ3) over the wall surface equal
to zero (adjoint wall boundary conditions), all the surface integrals along the
solid wall containing variations of the flow variables w.r.t. bm disappear and we
get

δF

δbm
= −

T∫
0

∫
Sw

(Ψ1ni + fA,visik nk)
∂ui
∂xl

δxl
δbm

dSdt−
T∫

0

∫
SI,O

Ψi+1ν
δ

δbm
(
∂ui
∂n

)dSdt

−
T∫

0

∫
SI,O

Ψi+1ν
δ

δbm
[(
∂uk
∂n

ni +
∂uk
∂t

ti)nk]dSdt+

T∫
0

∫
SI,O

Ψi
δ

δbm
(f invik nk)dSdt

+

T∫
0

∫
SI,O

fA,visik nk
δUi
δbm

dSdt+

T∫
0

∫
SO

Φ
δu1

δbm
dSdt (6)

where Φ = ∂F
∂u1

= α
(u2

1+α)3/2
, Sw, SI , SO stand for the wall, comprising moving100

and stationary walls where the no-penetration condition applies, inlet and outlet
surfaces respectively and ti are the components of the unit vector tangent to
SI,O. The first integral on the r.h.s. of eq. 6 does not contain derivatives in
the flow quantities w.r.t. bm and can easily be computed. All the other are
eliminated by imposing proper adjoint boundary conditions along SI and SO.105

The second and third integrals are eliminated by considering that δ
δbm

(∂ui

∂n )=0
and imposing Ψi+1ti=0 along SI and SO. The last three integrals in eq. 6 are
treated differently along the inlet and outlet and are written in the form

T∫
0

∫
SI,O

Ψi
∂(f invik nk)

∂Qj

δQj
δbm

dSdt+

T∫
0

∫
SI,O

fA,visik nk
∂Ui
∂Qj

δQj
δbm

dSdt+

T∫
0

∫
SO

Φ
δu1

δbm
dSdt
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where ~Q is defined as ~Q =
[
pt a p

]T
for the inlet and ~Q= ~V for the outlet.

The total pressure (pt) and flow angle (a) at the inlet and the static pressure at
the outlet are the boundary conditions of the flow problem and are independent
of the design variables bm. Subsequently, these three integrals can be eliminated
by setting Ψ1 + u1Ψ2 + 2ν ∂Ψ2

∂x1
=0 along SI and

Ψ1 + 2u1Ψ2 + Φ + 2ν ∂Ψ2

∂x1
= 0

∂Ψ3

∂x1
+ ∂Ψ2

∂x2
= 0

along SO. The above boundary conditions are imposed by modifying the adjoint
flux through all the cell faces belonging to SI and SO as

~fASI
=

 Ψ2

u1 + Ψ2

ν(∂Ψ3

∂x1
+ ∂Ψ2

∂x2
)

 , ~fASO
=

−Ψ2

Φ
0


respectively. Finally, the sensitivity derivatives become

δF

δbm
= −

T∫
0

∫
Sw

(Ψ1ni + fA,visik nk)
∂ui
∂xl

δxl
δbm

dSdt

which are computed as in [8].

5. UQ using Non-Intrusive PCE110

Let the QoI F (~ξ) be, a stochastic function of the stochastic variables ~ξ

associated with the probability density function w(~ξ) (PDF) . A family of or-

thogonal polynomials Hi(~ξ), with i defining the maximum degree of each poly-
nomial, is defined. In PCE, F is approximated by a linear combination of
C + 1=(N + q)!/(N !q!) Hermite polynomials [11, 12, 18],

F (~ξ) '
C∑
i=0

aiHi(~ξ) (7)

where N the number of stochastic variables and q the chaos order. The first two
statistical moments of F (mean value - µF and variance - σ2

F ) can be computed
as

µF =

∫ +∞

−∞
F (~ξ)w(~ξ)dΩξ , σ

2
F =

∫ +∞

−∞
(F (~ξ)− µF )2w(~ξ)dΩξ (8)

or, through Galerkin projections,

µF = a0, σ2
F =

C∑
i=0

a2
i (9)
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where ai are the PCE coefficients, given by the integrals

ai =

∫ +∞

−∞
F (~ξ)Hi(~ξ)w(~ξ)dΩξ, i = 0, 1, . . . , C (10)

The Gauss quadrature integration formula can be used to compute the above
integrals. The F values at M=(q+1)N points pi (Gaussian points) are weighted
(with known weight rm) and summed up to approximate all integrals in eqs. 10,

ai =

M∑
m=1

rmF (pm)Hi(~ξ) (11)

The objective function to be maximized for the problems under uncertain-
ties is defined as F̂ = µF +kσ2

F , where k a user-defined weight (k =−1, worst
case scenario optimization). To perform the optimization with a gradient-based
method, the derivatives of the first two statistical moments w.r.t. bm are re-
quired. Based on eqs. 9 and 10, the following derivatives

∂ai
∂bm

=

∫ +∞

−∞

∂F

∂bm
(~ξ)Hi(~ξ)w(~ξ)dΩξ, i = 0, 1, . . . , C (12)

are computed, where ∂F
∂bm

are computed by the continuous adjoint method. As
a consequence,

∂µF
∂bm

=
∂a0

∂bm
,

∂σ2
F

∂bm
=

C∑
i=0

2ai
∂ai
∂bm

(13)

These derivatives are, then, used to compute ∂F̂
∂bm

. In optimization problems
under uncertainties, the first two statistical moments should be computed with
M calls to the CFD software. Furthermore, to compute the derivatives of µF115

and σ2
F , the adjoint problem must be solved for each Gaussian node. Thus, the

cost per optimization cycle is 2M equivalent flow solutions (considering that a
flow and an adjoint solution have the same cost).

6. Applications

The aforementioned methods are used to optimize the shape of a diaphragm120

pump which includes three parts, namely the inlet diffuser, the main body with
the diaphragm and the outlet diffuser (fig. 1). Its working principles are sim-
ilar to the respiratory system of humans. The elastic diaphragm is deformed
(by periodically moving up and down) inducing fluid motion to the right, in
addition to the effect of the pressure difference between inlet and outlet. When125

the pump volume is increasing, i.e. the diaphragm moves upwards, more fluid
is impelled inside the pump compared to that leaving the pump from the out-
let. Conversely, when the diaphragm moves down, the pressure is increased
driving fluid to the outlet. The pump characteristics, such as its shape and
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flow conditions, determine the quantity of backflow at the outlet, which should130

be kept as low as possible. The diaphragm displacement along y is given by
∆y=Asin(2πt/T ), where the amplitude A is set to 0.03 times the diaphragm
length and the oscillations period (T ) to 2 sec. The inlet and outlet diffuser
shapes are controlled by 3 and 4 points, respectively. Their x and y coordinates
are considered as design variables leading to 14 design variables in total, fig. 1.

Figure 1: Pump geometry along with the points allowed to be displaced each of them gives two
(design variables) marked with squares and the corresponding Cartesian grid. The maximum
and minimum positions of the diaphragm are shown with blue and red line, correspondingly.

135

Initially, an optimization without uncertainties is carried out using the cut-
cell method and its adjoint to compute the derivatives of the objective function
(the QoI, in this case, eq. 4). 33 optimization cycles were performed and the
corresponding convergence history is shown in fig. 2a. The objective function
has increased by ∼ 0.45%, resulting to an optimal geometry without backflow140

at the outlet. Due to the fact that the reference geometry produces backflow
only at a small part of the outlet, there is not much room for improvement. The
differences between the optimal and the reference geometry are shown in fig. 3a
and their velocity magnitude iso-areas in figs. 4a and 4b. Fig. 5 gives a blow-up
view of the part where backflow occurs at the reference geometry.145

Regarding the optimizations under uncertainties, two uncertain variables
are considered and three different optimization runs were performed. In the
first one, the outlet static pressure is the only stochastic variable with mean
value µ = 105 Pa and standard deviation σ = 10 Pa. The chaos order is q =
3, requiring evaluations at 4 Gaussian nodes. The convergence history after150

14 optimization cycles is presented in fig. 2b. The resulted optimal geometry
improves the objective function by ∼ 0.2%. Fig. 3b shows the reference and
optimal geometries. The velocity magnitude iso-areas for the resulted optimal
geometry, for the flow at the mean value of the outlet static pressure, is depicted
in fig. 4c.155

In the second optimization problem, the inlet total pressure (µ = 100100
Pa and σ= 10 Pa) is the only stochastic variable and q= 3. The convergence
history after 22 optimization cycles is presented in fig. 2c. The main change in
the optimal geometry (fig. 3c) is that the outlet diffuser has been pushed in,
which result to ∼ 0.3% improvement. In fig. 4d, the velocity magnitude iso-160

areas of the optimal geometry, for the flow at the mean value of the inlet total
pressure, are plotted.

The third and final optimization problem includes two stochastic variables,
both the inlet total pressure (µ= 100100 Pa, σ = 10 Pa) and the outlet static
pressure (µ=105 Pa, σ=10 Pa). 9 Gaussian nodes are necessary for q=2. After165

14 optimization cycles, the objective function has increased by ∼0.1% (fig. 2d)
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which states that more stochastic variables restrict further the optimal solution.
The optimal geometry is slightly changed in contrast with the reference one (fig.
3d) and its velocity magnitude iso-areas, for the flow at the mean values of the
inlet total and the outlet static pressure, is plotted in fig. 4e. Note that in none170

of the optimal geometries backflow occurs.
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Figure 2: Convergence histories of the optimization (a) without uncertainties, (b) with the
outlet static pressure, (c) the inlet total pressure and (d) both of them as uncertain variables.

(a) (b)

(c) (d)

Figure 3: Comparison of the reference (black line) and optimal (blue dashed line) geometries
(only the inlet and outlet diffusers are shown) for the optimization cases (a) to (d) as in the
caption of fig. 2a.

Conclusion

The cut-cell method for incompressible fluids of unsteady 2D laminar flows
in areas with moving boundaries was developed. The discretization of the flow
equations is based on the pseudo-compressibility method and the Reynolds the-175

orem for the unsteady term. The developed software was used to solve the flow
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(a)

(b) (c)

(d) (e)

Figure 4: Optimization under uncertainties: Velocity magnitude iso-areas for (a) the refer-
ence geometry and geometries optimized (b) without uncertainties, (c) with the outlet static
pressure, (d) the inlet total pressure and (e) both of them as stochastic variables. These plots
fields correspond computations performed at the mean value of the uncertain flow conditions.

Figure 5: Reference geometry: backflow close to the exit boundary.

inside a diaphragm pump. The corresponding adjoint method was also devel-
oped. An optimization was carried out to optimally reshape the inlet and outlet
diffusers, eliminating backflow at the exit. The operation of the pump under
uncertainties was also studied. The non-intrusive PCE technique was used to180

compute the mean value and the standard deviation of the QoI. Finally, the
PCE technique was differentiated and became part of the optimization process
under uncertainties. The resulting algorithm was utilized to optimize the pump
shape by choosing three different sets of uncertain variables. In all cases the
backflow along the outlet of the optimized geometry was suppressed.185
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