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1. Introduction 

Shape optimization of internal cooling systems has been performed either using evolutionary algorithms 

(1; 2) or gradient-based methods, with the latter mostly relying on adjoint approaches (3; 4; 5; 6; 7; 8). 

Adjoint methods are widely used, since they can compute the gradients of objective and constraint 

functions at a cost which does not scale with the number of design variables. However, adjoint methods 

for the shape optimizations of internal cooling systems have mostly been developed and used separately 

for the fluid flow and the solid heat conduction PDEs. Recently, in (9), the continuous adjoint for 

Conjugate Heat Transfer (CHT) problems with compressible fluid flows was presented without though 

differentiating the turbulence model PDEs. Then, the continuous adjoint method to CHT problems for 

incompressible turbulent flows was derived in (10) by the authors of this paper. In contrast to (9), the 

method proposed in (10) overcomes the "frozen turbulence assumption" by including variations in the 

Spalart-Allmaras turbulence model in the development of the adjoint equations and taking into 

consideration grid sensitivities. 

This paper investigates the trade-off between optimizing the effectiveness of cooling systems and 

minimizing the total pressure losses between the inlet and outlet of the cooling duct. An adjoint-assisted 

optimization algorithm, able to solve constrained problems using SQP and line-search (11), has been 

programmed and is used in a 2D CHT problem to perform various optimizations and investigate the 

aforementioned trade-offs. In order to compute the gradients of the objective and constraint functions, 

the continuous adjoint method for CHT problems with turbulent flows, developed in (10) by the current 

authors, is used. Additionally, the internal cooling of a solid body cooled through fluid flowing in a 3D U-

Bend channel is investigated; this case is met in the literature as a simplified cooling system of internal 

combustion engines (8). Optimizations are carried out for an objective function penalizing increased solid 

temperature values, as in (10), and a new function expressing the heat flux crossing the Fluid-Solid 

Interface (FSI) towards the coolant. To parameterize the geometries and deform the meshes during the 

optimization in both 2D and 3D cases, a volumetric B-Splines morpher is used.  
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In section 2, the primal and adjoint equations for CHT problems, along with the expression of the 

sensitivity derivatives (SDs) are briefly presented. In sections 3 and 4, the volumetric B-Splines morpher 

and the optimization algorithm are discussed. In section 5, 2D and 3D cases are studied. The methods 

used in this paper are programmed in the open-source CFD toolbox OpenFOAM, version 2.3.1. The line-

search based optimization algorithm is driven by an OpenFOAM executable which is responsible for the 

solution of the primal and adjoint equations, parameterization, SDs computation, update of the design 

variables and, finally, mesh movement. To do so, the CHT solver (among others) is incorporated in the 

optimization algorithm as a class object, which is constructed at run-time, depending on the input 

provided by the user.  

2. Primal and Adjoint CHT Equations 

Let    be the fluid and    the solid domain, separated by the FSI  ; this is occasionally denoted as   ̅ or 

  ̅, depending on whether it is seen from the fluid or solid domain, respectively, see fig. 1. 

The steady flow is governed by the incompressible Reynolds-Averaged Navier Stokes equations, with 

closure effected by the one-equation Spalart-Allmaras turbulence model (12). In Table 1, the primal CHT 

equations as well as the corresponding adjoint ones, arising by following the mathematical development 

presented in detail in (10), are summarized. Eqs. (1) and (2) stand for the continuity and momentum 

equations, eqs. (3) and (6) govern the heat transfer through the FSI and eq. (5) is the Hamilton-Jacobi 

equation solved to obtain the distance field Δ required by the turbulence model eq. (4). In these 

equations,       ̃ are the velocity components, the static pressure divided by the constant fluid density 

   and the turbulence model variable and    (D=F,S) are the temperatures in    and   . Also,   stands 

for the kinematic viscocity,     (    ) (
   

   
 

   

   
) are the stresses,        ̃ is the eddy viscocity, 

                (
 

  
 

 ̃

   
) and    are the thermal conductivities in the two domains,    is the 

specific heat transfer coefficient under constant pressure and    and     the bulk and turbulent Prandtl 

numbers. Repeated indices imply summation. Terms  ( ̃), ( ̃),              ̃              can be 

found in (12; 13). 

Assuming that the boundary    of    is decomposed into              and     , standing for the inlet, 

outlet, FSI and non-FSI walls, respectively, the boundary conditions (BCs) imposed along      are zero-

Neumann conditions for   and Dirichlet conditions for all other flow variables. Also, along     , the 

pressure is fixed and zero Neumann conditions are imposed on   ,  
  and  ̃. Along      and   , a no-slip 

Figure 1: An example of a 2D CHT problem. 
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condition on the velocity and a zero-Neumann condition on   are imposed.      is considered to be 

adiabatic. Moreover, the    boundaries    are decomposed into            and   ; along      and      , 

Dirichlet boundary conditions on temperature and heat-flux distributions are imposed, respectively.  

Functions used in this paper, either as objectives or constraints, are defined over   ,  ̅ ,      and      

respectively as      ∫     
     ̅  ∫   ̅  

 ̅
 and        

 ∫        
   

         
. 

Following the mathematical development presented in detail in (10), the adjoint continuity, momentum, 

turbulence model, Hamilton-Jacobi and    and    heat transfer PDEs, listed as eqs. (7)-(12) in Table 1, 

arise. In those equations, variables       ̃       
  stand for the adjoint pressure, velocities, turbulence 

model variable, distance and temperature fields. Also,    
  (    )(

   

   
 

   

   
) stands for the adjoint 

stress tensor,      is the Levi-Civita symbol and   ̃,    and   can be found in (14). A detailed 

presentation of the  adjoint boundary conditions can be found in (10; 14). 
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Table 1: Primal and adjoint PDEs in a CHT problem involving a turbulent flow. Equations in the first row are solved over    

and those in the second row over   . 
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Primal Adjoint 
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Table 2: Primal and adjoint conditions imposed along the FSI. 

Considering the primal conditions along both sides of the FSI, heat-flux conservation and temperature 

equality conditions are imposed, see Table 2. The adjoint FSI conditions are similar to the primal ones, 

with terms            being contributions from objective functions along the FSI, such as the total heat 

flux crossing it from    to   , see eq. (17). 

Since eqs. (1),(2),(4),(5) do not depend on either    or   , eqs. (3) and (6) can be solved separately, after 

the solution of the remaining flow equations. On the other hand, eqs. (9) and (12) can be solved prior to 

the remaining adjoint equations, since they do not include any of   ,   or  ̃.   

The expression of the SDs for     read 
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)            (13) 

where       is the contribution of the Spalart-Allmaras PDE to the SDs, see (10; 14). Concerning   ̅, a 

similar expression without the first term on the RHS of eq. (13) gives the adjoint sensitivities, while for 

       
, the SDs expressions are given by the fourth term on the RHS of eq. (13) by omitting terms 

depending on   . 

 

3. Volumetric B-Splines Morpher 

During optimization, geometry parameterization is managed through a volumetric B-Splines morpher 

(15). One or more lattices of control points (CPs) are placed around or within the geometry and the CFD 

mesh points    residing inside the control boxes are displaced simultaneously with the CPs. The 

parameterization reads  

                                                          ( )     ( )     ( )  
                                                         (14) 
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where    correspond to the x,y,z coordinates of the CPs,       to the B-Splines basis-functions and 

      to the parametric coordinates of the mesh points residing in the control boxes (15). An example of 

the parameterization is presented in fig. 2.  

 

Figure 2: Parameterization of the initial geometry of the 2D CHT problem. Blue CPs are still and red ones can be 
displaced. In this way, continuity of displacement at the morphing box (thin black line) boundaries is ensured. 

4. Optimization Algorithm 

The optimization algorithm used in this paper can handle both constrained and unconstrained problems. 

In unconstrained problems, the update of the design variables     can be computed by means of a 

steepest descent (StD), conjugate gradient (CG) or Quasi-Newton (QN) method. In constrained problems 

with    equality constraints              , a Lagrangian          is formed, with    being the 

Lagrange multipliers and an SQP algorithm is used to satisfy the Karush–Kuhn–Tucker (KKT) conditions; 

to do so, the following system of equations is solved 

[
⌊

   

      
⌋  ⌊

   

   
⌋
 

⌊
   

   
⌋    

] ⌊
   

  
⌋= ⌊

  

   

  

⌋ 

to compute     and update   . The required Hessian ⌊
   

      
⌋ is approximated by the damped version 

of the BFGS method  (11).   

The use of the line-search method, Table 3, aims at computing an appropriate step length    in order to 

scale     and guarantee a sufficiently large change in the function       ∑     
  
   , where, in the 

presence of constraints,   is a penalty parameter updated in each optimization cycle to become equal to 

           , in case             , with     having a small constant value (11); in 

unconstrained problems,    . At the k-th optimization cycle and before initializing the line-search loop 

of Table 3,    is initialized with a constant value (equal to 1 for QN optimization methods) or is 

extrapolated from       At each line-search iteration l (not to exceed     in each optimization cycle),    

is updated either by multiplying it with a constant positive value smaller than 1 or by fitting a quadratic 

(in terms of   ) polynomial to   (11). Once the Armijo condition 

            
    

      

is satisfied (11), the line-search loop of Table 3 terminates. In the above expression,    and    
      are 

computed before the start of the line-search loop of Table 3, with    
     

  

   
     ∑     

  
     for 

constrained problems or    
     

  

   
    for unconstrained ones and      is a used-defined 
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positive constant (11). The optimization terminates when the KKT conditions are satisfied within an 

engineering accuracy or when the maximum number of optimization cycles has been reached.  

 

 

 

Optimization Algorithm: 

 Start from initial geometry 𝒃  

 Solve the primal equations 

 Evaluate objective and constraint function(s) 

 Solve the adjoint equations 

 For k=1,2,3,…, 𝑁𝑘 

o Compute adjoint sensitivities  

o Compute 𝛥𝒃𝑘  using StD/CG/QN or SQP  

o Update 𝜇 if needed 

o Compute 𝜑𝑘    𝐽   𝜇∑  𝐶𝑖 
𝛮𝑐
𝜄   and directional derivative 𝐷𝜑𝑛

 𝛥𝑏𝑛  
𝛿𝐽

𝛿𝑏𝑛
𝛥𝑏𝑛  𝜇∑  𝐶𝑖 

𝛮𝑐
𝜄    

o Initialize 𝑎𝑘  

o In constrained optimization, compute new values of 𝜆𝑖 with the SQP method 

o For l=1,2,… 𝑁𝑙𝑠  (l=1: Start of line-search) 

 Set 𝒑𝑘  𝑎𝑘𝛥𝒃𝑘  and 𝒃𝑘  𝒃𝑘   𝒑𝑘 

 Update  𝛺𝐹 , 𝛺𝑆 shapes and the corresponding meshes 

 Solve the primal equations 

 Compute 𝜑𝑘 𝑙 

 If 𝜑𝑘 𝑙   𝜑𝑘   𝑐 𝐃𝝋
𝒌 𝟎𝒑𝑘  

End of line-search  

 Else 

Update  𝑎𝑘  

 End (if) 

o End (for) 

o If  termination criteria 

EXIT optimization loop 

o End (If)  

o Solve the adjoint equations  

 End (for)  

Table 3:  Optimization algorithm using the Armijo backtracking line-search method. 
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5. CHT optimization cases  

5.1 2D optimization case 

Before proceeding to the 3D case(s), 2D constrained optimizations are presented; these are dealing with 

a solid body cooled by a fluid passing through an S-bend cooling channel located along one of the sides 

of    (practically lying above the side the shape of which should be designed, figs. 1,4). The coolant flow 

is turbulent (    ) with Re=10000 entering with          , the rest of the non-FSI    boundaries 

are adiabatic and a constant temperature         along the non-FSI    boundaries is considered. 

Also,           ⁄   ⁄ ,       ,       and        ⁄  ⁄  ⁄ . 

The case studied in this section concerns cooling effectiveness, quantified here by an expression 

identifying and penalizing areas with high temperatures. To do so without using non-differentiable 

expressions, the following sigmoid function is evaluated 

                                                                           ∫     
                                                                           (15) 

where        {
*  

 

     (     )   
+           

 (     )                      

  (16) 

and       (
 

      
  )     

   (
 

      
  )   

     
   

     

(     ) 
   

   

     
 with            and 

          .   ,    are thresholds used to regulate the slope of the sigmoid, with       . For the 

case studied here,                   However, a minimum value of eq. (15) could be found by just 

eliminating the    volume. This can be circumvented, by additionally using an equality constraint 

preserving the initial solid volume.  

Beyond the cooling effectiveness, it is usually desirable to have cooling systems with the minimum 

volume-averaged total pressure losses between the inlet and outlet of   , given by 

       ∫  
      

(       
 )       

As expected and also demonstrated in fig. 4 and Table 4, min.    and min.     under constant    volume 

are contradictory goals and solving such a two-objective optimization could lead to the front of non-

dominated solutions (Pareto front) which is beyond the scope of this study. Hence, a single-objective 

optimization problem is solved, in which     is minimized by imposing equality constraints on both    and 

the    volume which should keep their initial values. It is obvious that a less-restrictive inequality 

constraint could have been used for    by requiring it not to exceed its initial value. However, the 

outcome of such an optimization is expected to lead    to its maximum allowed (i.e. the initial) value, in 

order to reduce     as much as possible.  
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In Table 4 the contradictory behaviour of min.    and min.     under the volume constraint is showcased 

by comparing the results of two optimization case studies, (a) a first pertaining to the minimization of     

under constant    and (b) a second one regarding the minimization of     without constraining   . In 

both cases, the    volume equality constraint is used and convergence histories are plotted in fig 3. Case 

(a) satisfies the two constraints but leads to a smaller reduction in     compared to (b), in which    has 

increased by     compared to the initial one. This is due to the fact that, in order to reduce    , velocity 

magnitudes are decreased, see fig. 4, deteriorating thus heat convection and inevitably leading to higher 

   and   . On the contrary, in Case (b), focusing exclusively on    , heat conduction between the solid 

and the coolant is slightly reduced compared to Case (a) due to a shorter FSI length, fig. 5. 

Figure 3: Convergence of objective and constraint functions for Cases (a) on the left and (b) on the right. Note that, in Case (a) 
𝐉𝐓 acts as an equality constraint whereas in (b) this is not considered during the optimization. In both diagrams, Cvol refers to 

the equality constraint for the 𝛀𝐒 volume. 

Figure 4: Temperature (left) and velocity magnitude (right, x,y axes not in scale) fields over the baseline geometry (top) and 
the optimized geometries of Case a (middle) and b (bottom). In both cases, the same volume constraint is imposed. 
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Table 4: Comparison between the reduction of     and change in    between Cases (a) and (b). 

 

Figure 5: Comparison between optimized geometries of Case (a) (in red) and (b) (in blue). 

5.2 3D optimization cases 
In this section, the improvement of the cooling effectiveness of the internal cooling system of fig. 6 is 

studied. The geometry to be optimized comprises a 3D U-Bend cooling duct, fully placed inside a 

rectangular solid body. Along the non-FSI walls of   , a Dirichlet temperature condition (       ) is 

imposed. The fluid flow is turbulent (         based on the duct hydraulic diameter, 

                for the first barycenters off the wall), with inlet velocity of magnitude          

being parallel to the axial direction and   |
    

     . Also,           ⁄   ⁄ ,       ,       

and        ⁄  ⁄  ⁄ . 

Two optimizations are performed: (a) minimization of   , given by eq. (15) with         and 

        and (b) maximization of the heat flux crossing the FSI (or, equivalently, the maximization of 

the heat absorbed by the coolant) 

                   ∫  
       

  
                                                                        (17) 

Also, two different control boxes, namely Boxes 1 and 2, with different distances of the control box 

edges from the FSI, are used to parameterize the geometry (see fig. 6); in both cases, the same number 

of CPs (        along the three directions) is used and the same part of the FSI is parameterized. 

The x,y,z coordinates of the CPs are used as design variables and for each control box, all boundary CPs 

are kept fixed. In both cases, the control box is fully enclosed within the solid body, keeping its outer 

shape fixed (fig. 6).  

In Table 5, the results of the optimizations for both objective functions are summarized. It can be seen 

that Box 1 happens to provide comparatively better objective function values. This difference in 

objective values is also depicted in the optimized shapes; in fig. 7 it can be observed that changing the 

control box size affects the parts of the FSI that have been displaced. In specific, Box 1 mainly affects the 

frontal part of the U-bend while Box 2 affects more the lateral parts. By looking at figs. 8 and 9, depicting 

Change of functions during optimization No    constraint With    constraint 

     -36.3% -26.9% 

    +8.2% +0.003% 
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the temperature and velocity magnitudes in the optimized geometries, it can be seen that by increasing 

the velocity magnitude at the top of the U-bend and at the part following the flow turning, heat 

convection is positively affected and thus smaller temperatures near the FSI occur, reducing thus    ; a 

larger temperature gradient and a bigger surface of the FSI leads also to the maximization of   . 

 

Figure 6: Baseline geometry along with Boxes 1 (left) and 2 (right). CPs in blue are kept fixed while red ones can be displaced 
during the optimization. The purple surface and gray rectangle correspond to the FSI and solid outer boundary, respectively. 

 

 

Figure 7: Magnitude of cumulative displacement fields for min.     and max.     for Boxes 1 and 2. 

min.  𝐉𝐓, Box 1 max.  𝐉𝐅, Box 1 max. 𝐉𝐅, Box 2 min.  𝐉𝐓, Box 2 
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Figure 8: Temperature fields for    and   , plotted on a slice in the middle of the duct width. Initial (left) and optimized 
geometries (from left to right, min.     and max.     and for Boxes 1 and 2).  

 Min.     Max.     

Box 1 -2.7% +7.5% 

Box 2 -1.4% +4.4% 

Table 5: Results of the optimizations for the two objective functions and two control boxes. 

 

Figure 9: Velocity magnitude over    for the initial (left) and optimized geometries (layout of geometries as in fig. 8). 

Initial max.  𝐉𝐅, Box 1 max. 𝐉𝐅, Box 2 max.  𝐉𝐓, Box 1 max.  𝐉𝐓, Box 2 
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5. Conclusions 

In this paper, the continuous adjoint method for CHT problems with turbulent flows, developed and 

presented in detail in (10) by the same authors, is extended for new objective functions and is used to 

drive an optimization algorithm based on the Armijo backtracking line-search method (11). A number of 

shape optimization cases were studied in this paper for 2D and 3D internal cooling systems; the latter 

could comprise parts of the cooling systems found inside piston engines and turbine bladings. 

Constrained problems were examined by demonstrating that enhancing the efficiency of cooling and 

minimizing the volume averaged total pressure losses in the cooling channel are contradictory goals. The 

first of the two goals requires larger surface area between the cooled device and the coolant to improve 

heat conduction between them and higher velocity magnitude to improve heat convection, while the 

second goal is achieved when the opposite trends are followed during the design process.  On the other 

hand, minimizing the overheated part of the solid area or maximizing the heat flux through the FSI do 

not lead to the same optimal solutions and is thus interesting to have both adjoint methods developed 

and programmed. 
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