
λ-DNNs and their Implementation in
Aerodynamic and Conjugate Heat Transfer

Optimization

Marina Kontou, Dimitrios Kapsoulis, Ioannis Baklagis, and
Kyriakos Giannakoglou

Parallel CFD & Optimization Unit, School of Mechanical Engineering,
National Technical University of Athens, Athens, Greece

kgianna@mail.ntua.gr

Abstract. A fully-connected Deep Neural Network (DNN) architecture,
to be referred to as λ-DNN, used to predict 2D/3D scalar fields is pre-
sented. In aerodynamics, the λ-DNN is firstly trained on fields computed
using a Computational Fluid Dynamics (CFD) software. Then, it can be
incorporated into engineering processes in various ways. One possibility
is to use them in optimization problems solved by stochastic population-
based methods, in which the λ-DNN may act as the surrogate evaluation
model, replacing calls to the CFD tool. Another possibility is in multi-
disciplinary problems, to replicate the numerical solver for any of the
disciplines. This small list of possible usages is not exhaustive and, of
course, different usages can be combined. The input to each DNN con-
tains information to identify the geometrical shape and case-related data,
nodal coordinates and, in multi-disciplinary problems, interfacing data
connecting solvers for different disciplines on adjacent domains. In this
paper, the λ-DNN is firstly used in the aerodynamic shape optimization
of a wing using evolutionary algorithms, in which it replicates the CFD
solver. Then, it is used in a conjugate heat transfer problem dealing with
a solid domain in contact with a flow within a duct. In this problem, the
λ-DNN acts as a surrogate to the solver of the heat conduction equa-
tion on the solid domain, by interfacing with a CFD solver of the fluid
domain.

Keywords: Deep Neural Networks · Flow Prediction · Computational
Fluid Dynamics · Conjugate Heat Transfer · Evolutionary Optimization
of Aerodynamic shapes · Multi-disciplinary Optimization.

1 Introduction

In shape optimization, in one or more disciplines, a number of different designs
must be evaluated in order to reach optimal solutions. This number increases
when a stochastic optimization method is used so as to avoid being trapped
into a local minimum. In multi-disciplinary optimization, such as a Conjugate
Heat Transfer (CHT) one, the analysis of any configuration requires the iterative

2 M. Kontou et al.

solution of the flow equations over the fluid domain and the heat conduction PDE
over the adjacent solid domain; during the iterative solution, the two domain
solvers communicate at their interface by exchanging heat flux and temperature
distributions. The repetitive calls to the two solvers make the cost of a CHT
analysis high enough. As industrial requirements become more demanding, not
only the number of evaluations needed to reach the optimal solution but, also,
the cost per evaluation must be kept as low as possible. This is the main purpose
of this paper and the main reason for developing the proposed λ-DNN.

Deep Neural Networks (DNNs) [6] are known to effectively replicate complex
tasks by recognizing their core features. As such, in view of the previous discus-
sion, DNNs should learn how to predict the outcome of simulation codes solving
PDEs modeling physical phenomena or only the integral quantities needed to
evaluate the quality of a configuration, as it may suffice in most optimization
problems. In a CHT or any other multi-disciplinary problem, a good idea is to
make them replicate the solver corresponding, for instance, to one of the involved
disciplines. This might be good enough to shorten the wall clock time of such a
simulation. For instance, in an optimization loop, the expected gain from such
an algorithm must be evaluated by considering the cost for performing runs to
collect the necessary training patterns and that for training the DNN together
with the expected reduction in the cost of the optimization loop involving DNNs.
This paper demonstrates the efficiency of the proposed optimization techniques
based on the newly developed DNNs.

The proposed DNN, which will be referred to as the λ-DNN, fig. 1, is a
Fully-Connected Neural Network (FCNN), compact and with a relatively small
number of trainable parameters. This is described in detail in Section 2.1.

It is not the first time DNNs are used for predicting flow fields. Convolutional
Neural Networks (CNNs), which consist of convolutional layers with local con-
nections between neurons of successive layers, have been used to predict aerody-
namic flow fields in unseen flow conditions and geometries, [4]. U-Networks have
been used for the prediction of incompressible laminar flows, [5]. They consist
of an encoder which compresses the information with successive convolutional
layers and a decoder which decompresses it with deconvolution layers and yields
the output. In [9], a hybrid DNN, formed by CNN, convolutional Long Short
Term Memory network (ConvLSTM) and decoding-CNN (D-CNN), is used for
the prediction of unsteady flows.

In this paper, the λ-DNN architecture is applied in the aerodynamic shape
optimization of a wing and that of a fluid and a solid domain in a CHT problem,
using evolutionary algorithms occasionally assisted by on-line trained metamod-
els (Radial Basis Function, RBF) networks. The λ-DNN is capable of predicting
physical quantities (flow fields in CFD, temperature distributions in CHT) on
any type of computational grids (structured or unstructured), since grid connec-
tivity is not required. The λ-DNN requires a small number of training fields and
has a low computational cost (compared to [4, 5]), ensuring acceptable accuracy.

λ-DNN in Aerodynamic and CHT Optimization 3

2 Methods and Tools

2.1 The proposed λ-DNN

A DNN consists of many layers of neurons, with weights and biases being the net-
work parameters to be computed during the training phase. During this phase,
a cost function expressed as the root-mean-squared (RMS) of the differences
between the network outputs and the known/archived responses is minimized.
To this end, the back-propagation algorithm, [15], using closed-form expressions
for the derivatives of the cost function with respect to the network parameters,
is used.

The λ-DNN is exclusively formed by fully-connected layers. For better data
handling, its architecture consists of two separated branches (fig. 1), one for
each type of input. Each branch first passes through fully-connected layers and
then connects to the main branch which further processes signals through its
own fully-connected layers and concludes to the network output(s). In the cases
presented below, there are two different kinds of inputs, one refers to the mesh
(nodal coordinates) and the other to parameterization or physical quantities. The
different branches allow separate processing of input data of different nature.
This leads to extraction of different features for each branch, before merging
them to produce the final output.

The Rectified Linear Unit (ReLU) activation function [8] is used in all but
the last layer which uses the sigmoid function, for the one-discipline case, and
the Hyberbolic Tangent function (tanh) for the two-discipline one. The pre- and
post-processing of the set of training patterns and all DNN phases (construction,
training and testing) have been implemented in Python 3.6 [14] linked with
TensorFlow [1] and run on both GPUs and CPUs.

The λ-DNN is applied according to two different modes. The first is based
on a node-to-node logic, meaning that the network predicts only one output,
namely the flow variable at each grid node, while the second processes the whole
grid at once and the output of a λ-DNN run is a whole field. The difference
between the two modes lies on whether grid connectivity is taken into account;
the former is independent of the grid connectivity while the latter is not.

2.2 Computational Tools for Aerodynamic and CHT Analyses

For the numerical solution of CHT problems, [2, 12], coupled and decoupled solu-
tion schemes are in use. In the coupled approach, PDEs on different domains are
simultaneously solved while, in the decoupled approach, each discipline is solved
separately and provides boundary conditions for the others by exchanging in-
formation along their interface. In either approach, proper solvers’ interfacing
guarantees heat flux conservation and equal temperatures over the fluid-solid
interface. Herein, the decoupled approach is used. The procedure is computa-
tionally expensive as it requires many iterative cycles (CHT cycles), with calls
to the CFD solver (for the fluid domain) and the Heat Conduction one (for
the solid domain). Each domain is solved separately and the interaction of the

4 M. Kontou et al.

Fig. 1. The proposed λ-DNN architec-
ture. The DNN is named after its shape
that looks like the Greek letter λ. For
visualization reasons, each circle/layer
comprises a number of neurons/layers.
The number of inputs/outputs and that
of fully-connected layers vary among
the cases.

solvers is taking place at their interface, so a DNN trained on the contribution of
the one solver to the interface can be very helpful. By doing so, the cost of one
solver will be significantly reduced, together with the overall cost of the CHT
evaluation. More details about this implementation and the offered gains will be
provided in section 4, where the corresponding case is described.

Regarding the analysis of fluid flows, an in-house Reynolds-Averaged Navier-
Stokes equations’ solver, [3, 10], coupled with a Heat Conduction equations’
solver is used. The governing equations are discretized using the finite volume
technique. The CFD code solves incompressible and compressible flows; herein,
all cases are studied with the compressible variant. Fluid and solid domain solvers
fully exploit the CUDA programming environment and run on a GPU cluster.
CFD/CHT evaluations and DNN training were performed on NVIDIA K20 or
K40 GPUs.

2.3 EA-based Optimization, without or with Metamodels

For the EA-based optimizations presented in sections 3 and 4, the optimization
platform EASY, [7], developed by the Parallel CFD & Optimization Unit of the
National Technical University of Athens is used. Real encoding of the design vari-
ables, with 5% mutation probability and simulated binary crossover with 90%
probability are used. To reduce the cost of the EA-based optimization, EASY
optionally employs on-line trained metamodels (RBF networks) and this is per-
formed in a rather unique way compared to other similar tools. The role of the
metamodel(s) is to replace calls to the problem-specific method (PSM; herein, ei-
ther a CFD or a CHT solver) by approximating the objective function(s) value(s)
at negligible cost, after training them on data collected for individuals already
evaluated on the PSM. The distinguishing feature of the Metamodel-Assisted
EA (MAEA) implemented in EASY is that the RBF networks training occurs
during the evolution (this is what ”on-line” stands for). The use of metamod-
els starts after the first TMM individuals have been evaluated on the PSM and

λ-DNN in Aerodynamic and CHT Optimization 5

recorded in the MAEA database (DB). In all subsequent generations, a different
RBF network per individual is trained on a few selected neighboring DB entries.
Using these RBF networks, all population members are pre-evaluated and only
the most promising among them (λe; a small user-defined value per generation)
are re-evaluated on the PSM, [11] and recorded in the DB.

This is contrasted to the most widely used EAs supported by off-line trained
metamodels, which usually rely on a single metamodel, valid over the whole
search space. This metamodel is trained with evaluated individuals resulting
from a Design of Experiments (DoE) technique, [13]. In such an algorithm, the
EA–based search relies exclusively upon the previously (off-line) trained meta-
model. The ”optimal” solution(s) is/are re-evaluated on the PSM and the process
goes on by re-training the metamodel on the updated DB and performing a new
EA-based search until a termination criterion be met.

In this paper, in the sake of pluralism, both on- and off-line metamodels are
used within EASY. The λ-DNN is used as off-line metamodel, replacing the CFD
tool. The λ-DNN is updated if, upon convergence of the EA-based search using
the same λ-DNN, the re-evaluation of the ”optimal” solution (quotes denote the
outcome of an optimization in which the evaluation tool is a surrogate model)
on the CFD asks for better accuracy. In the CHT problem, the evaluation s/w
combines an accurate tool (CFD solver) for the fluid domain and the λ-DNN
for the solid domain. This optimization also uses on-line trained metamodels (a
MAEA with RBF networks, implemented as described above).

3 Case I: Aerodynamic Shape Optimization

The first application is concerned with the use of the λ-DNN in the prediction
and the aerodynamic shape optimization of a transonic wing. The geometry of
[16] is the reference wing. The flow is inviscid with free-stream Mach number
and flow angles equal to M∞ = 0.8395, a∞,pitch = 3.06o and a∞,yaw = 0o. The
wing shape is encapsulated within a 6× 3× 3 volumetric NURBS (trivariate
Non-Uniform Rational B-Splines) control grid. A knot vector and a degree per
parametric direction are needed to complete the parameterization. The morph-
ing used in this case is graphically presented (as a 2D example, though) in Case
II. 12, out of the 54 control points (CPS), are allowed to move in the chord-
wise and the normal-to-the-planform directions within ±20% of their reference
coordinate values, resulting to 12×2=24 design variables in total. In this case,
the parameterization is used not only for generating training patterns but, also,
as an input to the DNN to identify different wing shapes. An unstructured 3D
CFD grid of ∼ 1.33 × 106 nodes generated around the reference geometry and
adapted to all changed shapes is used. A single run of the CFD software takes
∼2min on a K20 GPU.

Both a λ-DNN and an FCNN are used. The first branch of the λ-DNN
consists of four fully-connected layers with 128, 256, 256, 128 neurons each; the
second branch consists of three fully-connected layers with 128, 256, 128 neurons
each. After their merging, another three fully-connected layers with 128, 256, 128

6 M. Kontou et al.

neurons each lead to the final output. For comparison reasons the number of
neurons and layers in the λ-DNN and the FCNN are kept the same. The FCNN
consists of seven layers with 256, 512, 512, 256, 256, 512, 256 neurons, respectively.
The 200 wings are used for training the λ-DNN and the FCNN by randomly
changing the position of the pre-defined CPs of the morphing box. In this case,
a node-to-node procedure is followed.

The networks are trained on the M '27000 surface nodes of each CFD grid,
thus the total number of training patterns is 200×27000. The input data to the
networks are the 24 coordinates of the free-to-move control points along with the
(x, y, z) coordinates of any surface node, i.e. 27 inputs in total, and the output
is a single pressure value at this surface node. The first branch of the λ-DNN
processes the coordinates of the control points, while the second one the (x, y, z)
coordinates.

In this case, the training cost is ∼ 1.2h for both networks. Before proceed-
ing with the shape optimization, the prediction quality of the DNNs on two
new wings generated by displacing the control points within the aforementioned
bounds, and not seen by the DNNs before, is checked. Predictions of pressure
(pDNN) using the trained DNNs are compared with CFD evaluations (pCFD)
using the Mean Absolute Percentage Error (MAPEp) indicator per wing, given
by:

MAPEp =
1

M

M∑
i=1

∣∣∣∣pi,CFD − pi,DNNpi,CFD

∣∣∣∣ (1)

The average MAPEp computed on the two new wings is equal to 0.81% for the
λ-DNN and 3.83% for the FCNN; and this demonstrates the superiority of the
proposed network type.

Then, two EA-based shape optimizations, for maximum wing lift (L), are
performed. During the first one, the λ-DNN assists the EAs to reduce the total
number of calls to the expensive CFD s/w, by acting as an off-line trained
surrogate (Run1). The λ-DNN predicts the pressure field on the surface of each
new wing presented to it which, through integration, computes the lift force. A
CFD run on the “optimal” solution is performed only at the end of the EA-
based cycle. The second one is a MAEA (with on-line trained RBF networks,
TMM = 40 and λe = 3) optimization relying upon the CFD code instead of
the λ-DNN (Run2). A comparison between Run1 and Run2 is made. Both are
configured with 10 parents and 20 offspring, i.e. they are (10,20) EAs or MAEAs.
This is a well performing set-up of the optimization method in this case which
was kept the same in both cases, in the sake of fair comparison.

For either run, a total budget of 250 CFD evaluations (”time-units”) is a
priori defined. For Run1, this budget corresponds to: 200 time-units to form the
DB, 33 to train the network and only 17 for running the optimization, spent,
in particular, for the necessary CFD re-evaluations. Run1 resulted to a wing
geometry having a lift that is by 2.9% higher than the solution of Run2. We
conclude that the usage of the λ-DNN improves the efficiency of the EA-based
search even more than the (already very fast) MAEA. In fig. 2, the convergence
histories of the two optimizations are illustrated. To quantify the gain with

λ-DNN in Aerodynamic and CHT Optimization 7

respect to the original shape, L is always dimensionalized by the reference wing
L value.

In fig. 3, the pressure field for the optimal geometry is shown for the solu-
tions of Run1 and Run2. For the former, two pressure fields are presented, that
evaluated by the CFD and that predicted by the λ-DNN. The pressure fields
differ between Run1 and Run2, since the two optimizations resulted in different
wing shapes. For the optimized wing of Run1, the pressure prediction of the
λ-DNN (fig. 3, right) is so close to the CFD solution (fig. 3, middle), and this
demonstrates the reliability of the proposed network.

 0.8

 0.9

 1

 1.1

 1.2

 1.3

 1.4

 0 50 100 150 200 250

Li
ft/

Li
ft r

ef

Time-Units

MAEA
EA with DNN

Training Patterns
Training Cost

Fig. 2. Case I: Convergence History of the EA relying on the λ-DNN (Run1) and the
MAEA (based on on-line trained RBF networks) (Run2). The blue line corresponds
to the 200 training patterns plotted in ascending order, the pink line represents the
training cost, while the black line represents the EA relying on the λ-DNN; all three
of them stand for Run1.

4 Case II: CHT Shape Optimization

Here, the λ-DNN is used in the CHT optimization of a fluid duct adjacent to
a solid domain, to replace the heat conduction equation solver on the solid do-
main. The same CFD code for the fluid domain (this time solving the Reynolds-
Averaged Navier-Stokes equations with the Spalart-Allmaras turbulence model,
[17]) is used. In the absence of the λ-DNN, the CFD code interacts with a solver
for the conduction equation over the solid domain. The same morphing technique
(adapted to 2D cases) is used. The high temperature solid domain is cooled by
fluid of lower temperature (T) flowing within the S-bend duct. The two domains
are solved in a decoupled manner, by interchanging the computed heat flux (from
the fluid to the solid) and temperature (in the opposite direction) distributions
over the fluid-solid interface (FSI).

For the fluid domain, the flow has inlet total pressure pt,inlet=105kPa, inlet
total temperature Tt,inlet=300K, outlet static pressure poutlet=100kPa. For the
solid domain, a constant temperature of T =500K is imposed along its bottom

8 M. Kontou et al.

Fig. 3. Case I: Pressure Fields on the surface of the transonic wing. Left: Optimized
solution of Run2. Middle: Optimized solution of Run1, evaluated by CFD. Right:
Optimized solution of Run1, re-evaluated by the λ-DNN.

boundary, while the rest non-FSI nodes are considered adiabatic. The geometry
is parameterized using a 8×6 volumetric NURBS control grid, fig. 4. 24 CPs
are allowed to move within ±10% of their reference coordinate values in either
direction, resulting to 24×2 = 48 design variables in the optimization problem.
In this 2D case, the parameterization is common for both the fluid and the solid
domain but it is not used as input (information) to the DNN. A mono-block
structured grid of ∼ 330000 nodes is used to discretize both domains, where
M = 240000 of them correspond to the solid domain. A single run of the CHT
solver takes ∼20min on a K40 GPU.

The database for training the λ-DNN is built by evaluating 180 geometries by
randomly moving the CPs. As in the previous case, a λ-DNN and an FCNN are
used. The two branches of the λ-DNN consist of one layer each with 512 neurons.
The two branches merge to a single layer of 20 neurons that leads to the final
output. The network architecture is selected after a trial-and-error procedure.
The FCNN consists of two layers with 1024 and 512 neurons each.

The input data are the (x, y) coordinates and the heat fluxes at the 600 FSI
nodes, i.e. 1800 inputs in total. At the λ-DNN, the first branch processes the
(x, y) coordinates, while the other the heat fluxes. The output is the temperature
(T) field on the entire solid domain; grid connectivity and number of nodes
remain the same for all the geometries. It is important to notice that, in contrast
to the previous case where a node-to-node procedure was followed, here, the
nodal T values over the entire solid domain are simultaneously predicted. Two
new geometries, not seen by the DNNs before, are used to validate the λ-DNN
and the FCNN. In this case the average values MAPET 0.3% for the λ-DNN and
0.8% for the FCNN are computed. The λ-DNN has better prediction accuracy
and, thus, this is used during the optimization.

λ-DNN in Aerodynamic and CHT Optimization 9

Fig. 4. Case II: Control Points of the volumetric NURBS, morphing box, parameteriz-
ing the S-bend duct (upper) and a small part of the solid domain (lower). Black points
are kept fixed, whereas red ones are allowed to vary in either direction, morphing the
enclosed parts of the fluid and solid domains.

Three MAEA-based optimizations are performed with 10 parents and 20
offspring, supported by on-line trained RBF networks with TMM =40 and λe=3.

The first two optimizations aim at minimizing the mass-averaged total pres-
sure losses between the inlet (I) and the outlet (O) of the S-bend duct, i.e. they
are dealing with an objective defined only in the fluid domain,

F1 =

∫
SI
ptρvndS +

∫
SO
ptρvndS∫

SI
ρvndS

(2)

ρ, vn stand for the density and the normal (directed outwards) to the boundary
velocity component.

The first optimization (Run1) uses the λ-DNN as surrogate to the solid
domain solver, while the second one (Run2) is based exclusively on the solution
of the governing PDEs. A total budget of 250 CHT evaluations (“time-units”;
one time-unit is the cost per evaluation in Run2) is decided for both of them.
For Run1, this budget corresponds to 30 time-units to form the database, 24 for
training the network and 196 for the optimization, since an evaluation on the
(CFD and λ-DNN) tool costs about 0.76 time-units. Then, Run2 is performed.
Fig. 5 presents the convergence histories of the MAEAs and the resulting optimal
geometry; a reduction in F1 ∼8.6%, compared to the initial/reference geometry,
is obtained in both Run1 and Run2. F1 is normalized by the value of the same
quantity in the reference geometry. The optimal solution of Run1 is re-evaluated
on the exact CHT solver; the λ-DNN error is less than 0.008% verifying the
network accuracy.

Then, a two-objective optimization, by adding a second target defined over
the solid domain, is performed. The second objective function is the percentage
of the area of the solid domain over which T exceeds a threshold value, scaled
by the excess temperature, namely

F2 =
1

Ωs

∫
ΩS

(T − Tthres)dΩ (3)

F2 should be minimized. The T = 500K value along the bottom boundary of
the solid domain is the highest temperature over the domain. The value of the
Tthres = 450K is defined in order to minimize the area of the domain which
exceeds this threshold value. In whatever follows, F1 and F2 are presented in a
non-dimensional form; they are both divided by the corresponding values of the
reference solution (the one presented in fig. 4).

10 M. Kontou et al.

Fig. 5. Case II: Left: Convergence histories of the MAEA-based optimizations for Run1

(Fluid-(λ-DNN)) and Run2 (Fluid-Solid). Right: The initial (black) and the optimal
(red) geometries (x and y axes not in scale).

The new optimization (Run3) uses the λ-DNN as the surrogate to the solid
domain solver. The total budget is still 250 CHT evaluations distributed as
for Run1. In fig. 6, the front of non-dominated solutions resulted from Run3
is presented. The members of the front are re-evaluated with the exact CHT
solver to verify the network accuracy. The re-evaluated members remain non-
dominated and the errors in F1 and F2 are ∼0.008% and ∼0.09%, respectively.
The T field from Run3 and its re-evaluation as well as the prediction error are
shown for the member of the front with F1 = 0.975 and F2 = 0.997 in figs. 7
and 8, respectively. As shown in figs. 6 to 8, the accuracy of the λ-DNN is high
enough to sufficiently replicate the heat conduction equation solver on the solid
domain during an optimization and reduce its overall cost.

 0.986
 0.988

 0.99
 0.992
 0.994
 0.996
 0.998

 1
 1.002
 1.004

 0.94 0.96 0.98 1 1.02 1.04 1.06 1.08

F
2

F1

Run3

Re-Eval
Baseline

Fig. 6. Case II: Front of non-dominated solutions computed from Run3 (red squares),
plotted along with the baseline geometry (black square). The front members are
re-evaluated on the exact CHT solver resulting to a new non-dominated front
(blue circles). The computed “optimal” members on the front remain non-dominated
after the re-evaluation using the computational mechanics s/w.

λ-DNN in Aerodynamic and CHT Optimization 11

Fig. 7. Case II: Temperature field as resulted from Run3 (left) and re-evaluated with
the exact CHT solver (right) for the member of the front with F1 = 0.975 and F2 =
0.997 (x and y axes not in scale).

Fig. 8. Case II: Prediction error of the solid domain temperature field for the member
of the front with F1 = 0.975 and F2 = 0.997.

5 Conclusions

This paper presented a new DNN architecture, called λ-DNN, which can be used
in single- and multi-disciplinary optimization. The λ-DNN is used to predict
CFD and CHT results in the form of entire flow fields or temperature distribu-
tions, so as to replace expensive runs of CFD/CHT solvers in design/optimization
processes. The proposed method has been demonstrated in a 3D one-discipline
and a 2D two-discipline case. The DNN yields very good predictions of fields.
Inputs are presented to two different branches for better and separate processing
of the given input data and, then, these two branches meet at a single one that
gives the required output. The λ-DNN manages to reduce the training cost and
number of patterns required. The high prediction accuracy of the proposed λ-
DNN was demonstrated in a wing flow problem and a solid domain adjacent to
a S-bend duct as a surrogate to the heat conduction solver. Regarding the one-
discipline case optimization, the trained λ-DNN is used as metamodel during an
EA-based optimization and improves the search performance with results com-
parable with those provided by the MAEA. Regarding the two-discipline case,
the λ-DNN is used instead of the Heat Conduction solver during a MAEA op-
timization. Therefore, the proposed λ-DNN is shown to be capable of replacing
the CFD and CHT solvers in expensive (analysis and optimization) processes.
Future work includes the use of the λ-DNN in 3D real-world one- and two-
discipline applications, such as aeroelastic shape optimization.

6 Acknowledgments

This work has been supported by the Greek Research and Technology Network
(GRNET) High Performance Computing Services, through the TurboNN and
CGT-DNN projects.

12 M. Kontou et al.

References

1. Abadi, M., Agarwal, A., Barham, P.: TensorFlow: Large-scale machine learning
on heterogeneous systems (2015), http://tensorflow.org/, software available from
tensorflow.org

2. Andrei, L., Andreini, A., Facchini, B., Winchler, L.: A decoupled cht procedure:
application and validation on a gas turbine vane with different cooling configura-
tions. 68th Conference of the Italian Thermal Machines Engineering Association
(2013)

3. Asouti, V., Trompoukis, X., Kampolis, I., Giannakoglou, K.: Unsteady CFD com-
putations using vertex-centered finite volumes for unstructured grids on Graphics
Processing Units. International Journal for Numerical Methods in Fluids 67(2),
232–246 (2011)

4. Bhatnagar, S., Afshar, Y., Pan, S., Duraisamy, K., Kaushik, S.: Prediction of aero-
dynamic flow fields using convolutioanl neural networks 64, 525–545 (2019)

5. Chen, J., Viquerat, J., Hachem, E.: U-net architectures for fast prediction of in-
compressible laminar flows (2019)

6. Deng, L., Yu, D.: Deep learning: Methods and applications. Foundations and
Trends in Signal Processing 7(3-4), 1–199 (2014)

7. Giannakoglou, K.: The EASY (Evolutionary Algorithms SYstem) software,
http://velos0.ltt.mech.ntua.gr/EASY. (2008)

8. Goodfellow, I., Bengio, Y., Courville, A.: Deep Learning. The MIT Press (2016)
9. Han, R., Wang, Y., Zhang, Y., Chen, G.: A new prediction method of unsteady

wake flow by the hybrid deep neural network (2019)
10. Kampolis, I., Trompoukis, X., Asouti, V., Giannakoglou, K.: CFD-based analysis

and two-level aerodynamic optimization on graphics processing units. Computer
Methods in Applied Mechanics and Engineering 199(9-12), 712–722 (2010)

11. Karakasis, M., Giotis, A., Giannakoglou, K.: Inexact information aided, low-cost,
distributed genetic algorithms for aerodynamic shape optimization. International
Journal for Numerical Methods in Fluids 43(10-11), 1149–1166 (2003)

12. Moretti, R., Errera, M.P., Couaillier, V., Feyel, F.: Stability, convergence and op-
timization of interface treatments in weak and strong thermal fluid-structure in-
teraction. international Journal of Thermal Sciences 126, 23–37 (2017)

13. Myers, R., Montgomery, D.: Response Surface Methodology Process and Product
Optimization Using Designed Experiments. 2nd edn. (2002)

14. Rossum, G.: Python tutorial. Technical Report CS-R9526 (1995)
15. Rumelhart, D., Hinton, G., Williams, R.: Learning representations by back-

propagating errors. Nature 323(6088), 533–536 (1986)
16. Schmitt, V., Charpin, F.: Pressure distributions on the ONERA M6 wing at tran-

sonic mach numbers, experimental data base for computer program assessment.
Tech. rep., AGARD 138 (1979)

17. Spalart, P., Allmaras, S.: A one–equation turbulence model for aerodynamic flows.
La Recherche Aerospatiale 1, 5–21 (1994)

