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Abstract

Mesh displacement based on Radial Basis Functions (RBF) interpolation is known for its ability
to preserve the validity and quality of the mesh, even for large displacements, without being affected
by mesh connectivity. However, in the case of large meshes, such as those used in real-world Compu-
tational Fluid Dynamics (CFD) applications, RBF interpolation, in its standard formulation, becomes
excessively expensive. This paper proposes a cost reduction technique for mesh displacement based
on RBF, by splitting the process into two steps. In the first step, named predictor, a data reduction
algorithm that adaptively agglomerates mesh boundary nodes by reducing the RBF interpolation prob-
lem size is used. Upon completion of the first step, due to the agglomeration and the fact that the
RBF interpolation is applied to the boundary nodes too, the so-displaced boundaries do not match the
given displacements; thus, the position of the boundary nodes must be corrected during the second
step, named corrector. The latter performs a local deformation based on RBF kernels with local sup-
port, to make the boundary conform to the known displacements of its nodes. The proposed method is
accelerated by employing the Sparse Approximate Inverse preconditioner based on geometrical con-
siderations and the Fast Multipole Method. The method and the programmed software are validated
on three test cases related to the deformation of CFD meshes inside a duct and a turbine stator row as
well as around a car model.

1 Introduction
In CFD, the need for adapting an existing mesh to displaced boundaries arises in many applications in-
cluding aerodynamic shape optimizations, aeroelastic simulations and flow simulations in the presence
of moving bodies. Mesh displacement is an alternative to remeshing since the latter might hinder the con-
tinuation of new simulations from available numerical solutions on the unstructured mesh, for instance,
of the previous domain.

Various mesh displacement methods have been proposed in the past to meet specific requirements
springing from diverse types of simulations or even disciplines. These can be classified in several ways.
Some of the encountered classifications are methods based on interpolations, control meshes and physical
analogies [1], algebraic vs. partial differential equation methods [2], connectivity-based vs. point-based
methods [3], methods for structured or unstructured meshes [4] and methods that can more or less ef-
ficiently be parallelized [5]. Recent surveys, such as [1] and [6], enumerate the pros and cons of mesh
displacement methods based on various applications and quality criteria.

Mesh displacement methods that have been around for a long time are spring analogies that model
the mesh as a network of linear [7], torsional [8], semi-torsional [9] and ball-vertex springs [10] and
solve the static equilibrium equations to find the updated nodal locations. These methods are efficient
for meshes for structural analysis; [1] reported invalid elements and high computational cost to handle
large displacements of CFD meshes with stretched elements for viscous flow simulations. Besides, these
methods require the connectivity of the CFD mesh to be available, and extension to generic polyhedral
hybrid meshes is, thus, difficult.

Continuum elastic approaches have been proposed by several authors (i.e. [11–13]). They displace
the mesh by solving the linear elasticity equations on the mesh itself, thus connectivity should be known.
Laplacian methods [14] solve the Laplace PDEs to diffuse the surface mesh node displacements into the
domain. The method is efficient for single frequency deformations, although large multiple frequency
deformations may lead to invalid meshes. Better quality of the displaced mesh can be achieved by
solving the biharmonic smoothing equation [15], at increased computational cost. The algebraic damping
method [16] is based on the displacement of each internal mesh node in terms of the displacement of the
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closest node on the moving boundaries. The resulting deformation appears to be very rigid close to the
boundaries but, for large mesh deformations, algebraic smoothing might be necessary to improve mesh
quality. The Delaunay graph method [17] is based on the generation of a control mesh based on the
Delaunay triangulation of the boundary nodes and the mapping of the internal nodes on the Delaunay
graph. The triangulation is adapted to geometry changes, and volume mesh nodes are relocated through
barycentric interpolation. The Inverse Distance Weighting (IDW) method [18] computes the location
of internal nodes through the direct interpolation of the boundary nodal displacements using weights
depending on their distance from the boundary. Transfinite interpolation [19] is based on the interpolation
of the deformations along mesh lines which is computationally efficient but limited to structured meshes
[20].

Mesh displacement based on RBF interpolation has proved to be robust for large deformations [21].
[1] compared the most common techniques, including linear and torsional springs, linear elasticity and
several interpolation-based methods such as the RBF and IDW. The paper concluded by recognizing
mesh displacement based on RBF interpolation as one of the most promising approaches regarding ro-
bustness and mesh quality; its high computational cost and bad scalability can be mitigated by greedy
data reduction algorithms. [22] benchmarked a mesh displacement approach based on RBF interpolation
against six techniques previously tested in [6] and concluded that the former, though more expensive,
yields deformed meshes of better quality. [18] compared mesh displacement based on RBF and IDW and
demonstrated a reduction of the computational cost for the latter, compared to the former, by a factor of
20, for a hexahedral mesh for inviscid flow simulations with ∼75, 000 cells. However, the RBF method
produced slightly better mesh quality than IDW.

The inefficiency of the RBF-based mesh displacement, in its standard form, is due to the need to solve
a linear system of equations with rank equal to the number of the displaced and fixed boundary nodes,
besides the computation of the displacements of the internal nodes. In recent years, many researchers
focused on the cost reduction of RBF interpolation. Despite the progress made in this field during the
last years, the problem is still open to new strategies and improvements.

The use of RBF kernels with local support was the first breakthrough to reduce the cost of RBF
interpolations [23]. They lead to sparse matrices that can be solved more efficiently. However, a trade-
off between the smooth propagation of the deformation (mesh quality) and the sparsity of the matrix
(computational cost) exists. For large deformations, local support must be enlarged, and the problem
becomes similar to one with RBF kernels with global support, vanishing the benefits of local support
[23]. This problem was alleviated in [24] by dividing the deformation into smaller steps controlled by
locally supported RBF interpolations with small radii, leading to a series of very sparse linear systems to
be solved. Similar methods, named multilevel RBF techniques, involve successive levels of nested RBF
interpolations through which, on each level, the solution from the previous coarser level is interpolated
[25, 26]. The mesh displacement method proposed in [27] was based on domain decomposition and local
RBF interpolations resulting in a series of small problems.

Greedy algorithms [4] typically start from a coarse approximation to the mesh deformation and iter-
atively refine it until the desired accuracy is reached. Greedy methods use a subset of the surface mesh
nodes to describe the new shape, leaving the rest of the nodes for error checking; so, they are more effi-
cient than standard RBF interpolation, although they cannot precisely reproduce all surface deformations.
The iterative procedure required to guarantee the error drop to a prescribed tolerance is time-consuming
for tight tolerances. [28] compared various data reduction methods both by considering the actually
imposed displacements and computing the subset of surface mesh nodes a priori. [3] proposed an ag-
glomeration strategy of the boundary nodes as typically adopted in multigrid methods. [29] proposed
an incremental least-squares solver which, similarly to greedy algorithms, uses a subset of the surface
mesh nodes to approximate the deformation. [30] proposed the use of a multiscale RBF interpolation
that employs multiple support radii to capture deformations at different scales. The interpolation matrix
is built starting from a coarse subset of source nodes. The algorithm proceeds by iteratively adding the
remaining source nodes using a support radius such that the newly added nodes do not affect the previ-
ous, ending up with an easier to solve linear system. [4] suggested a correction step such as a Delaunay
graph mapping, after the approximation step; however, locally supported RBF interpolation appears to
be a better choice from the quality and robustness point of view [31].

This paper introduces a two-step cost reduction technique for mesh displacement, Section 3. The two
steps successively deform the mesh based on RBF interpolation, the principles of which are outlined in
Section 2. The interpolation is further accelerated by employing the Sparse Approximate Inverse (SPAI)
preconditioner, Section 4.1, the Fast Multipole Method (FMM), Section 4.2, and an integer lattice-based
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method, Section 4.3.
The proposed strategy and the programmed software are used on three benchmark test cases, Section

5. In Section 5.1, the mesh quality resulting from the proposed method is compared with standard RBF.
In Section 5.2, the scalability of the software is analyzed in order to make it efficient in cases with huge
mesh sizes. In Section 5.3, the performance of the software is investigated by varying the main input
parameters. Finally, in Section 5.4, the effectiveness of the proposed mesh displacement method to large
displacements is tested by using it in an evolutionary algorithm based optimization.

2 Background of RBF-based Interpolation
An RBF network is a weighted linear combination of RBF kernels interpolating scattered data in the Q-
dimensional space. In mesh displacement, in specific, the quantities to be interpolated are the known 3D
displacements at the K surface mesh nodes or, generally, at K distinct source nodes. A 3D RBF kernel
φk(x) = φ(r = ‖x − xk‖) is a real-valued function depending on the distance r of a point x ∈ �3 from the
so-called RBF interpolation source xk ∈ �

3. ‖.‖ stands for the Euclidean distance.
To interpolate the given displacements δk, 1 ≤ k ≤ K, K RBF kernels centered at the respective nodes

must be used. The RBF interpolant d : �3 → �3 takes the form:

d(x) =

K∑
k=1

wkφk(x), (1)

where the weights wk ∈ �
3 are computed so as to exactly reproduce the known displacements d(xk) = δk

at the K source nodes; this requires the numerical solution of a K × K linear system, with different
right-hand side (r.h.s.) arrays.

Equation 1 is often modified by adding a polynomial term to preserve affine motion, i.e. translation,
rotation and scaling. In 3D, the RBF interpolant, including a degree-one polynomial, takes the following
form:

dπ(x) =

K∑
k=1

wkφk(x) + a0 + a1x + a2y + a3z, (2)

where aq ∈ �
3, 0 ≤ q ≤ 3 are the polynomial coefficients. To compute the new degrees of freedom, new

conditions are introduced; assuming that the sources are not co-planar these conditions are:

K∑
k=1

wk = 0 and
K∑

k=1

wk � xk = 0 , (3)

where 0 ∈ �3 denotes the zero vector and � the entry-wise product operator. Then, if

Φ =


φ1(x1) · · · φK(x1)
...

. . .
...

φ1(xK) · · · φK(xK)

 , P =


1 xT

1
...

...
1 xT

K

 ,

W =


wT

1
...

wT
K

 and A =


aT

0
...

aT
3

 , ∆ =


δT

1
...

δT
K

 .
(4)

the (K + 4) × (K + 4) linear system to be solved is[
Φ P
PT 0

] (
W
A

)
=

(
∆

0

)
. (5)

For large K values, the computation of W and A by solving equation 5 becomes expensive. It exhibits
poor scalability if implemented naively, due to both the complexity of linear solvers and its stiffness.
Solving equation 5 is referred as the training phase of the interpolation whereas computing the displace-
ments dπ(x) for all mesh nodes or targets, by equation 2, is the interpolation phase. More about the theory
on the solvability of these types of interpolations can be found in [32].
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The behavior of the RBF interpolation is profoundly influenced by the chosen kernel φ [23], of either
local or global support. The former requires the definition of a local support radius rs which determines
the region of influence of the kernel around each source node. Since φ(r) , 0 if and only if r < rs,
displacements imposed on the source nodes affect only mesh nodes lying inside the region of influence
of the corresponding kernel. A low-valued support radius leads to a better conditioned and sparser matrix
Φ whereas deformation is dissipated over a smaller portion of the interior mesh.

By appropriately selecting the kernel φ(r), see Section 3, matrix Φ becomes symmetric and positive
definite. However, the block-matrix on the left-hand side of equation 5 is generally not positive definite.

3 The Two-Step Strategy
The proposed two-step strategy divides the mesh displacement problem into two successive RBF-based
interpolation sub-problems:

• In the first step (predictor), all mesh nodes (surface and interior) are targets of a global RBF inter-
polation, and a coarsened set of source nodes is generated by a data reduction method. The latter
takes both the spatial distributions of mesh nodes and the displacement field to be interpolated into
account. In this step, the interpolant takes the form of equation 2 that includes degree-one polyno-
mial terms. After displacing the entire mesh though, the boundary nodes do not precisely respect
the known displacements.

• The second step (corrector) corrects the position of the surface mesh nodes through local deforma-
tions. All surface mesh nodes become sources and only the internal nodes in a small volume close
to the surface become targets. In this step, the RBF interpolant takes the form of equation 1.

The two sub-problems are more manageable than the original problem. In fact, the first step generates a
”small” but dense coefficient matrix (its rank might be by orders of magnitude lower than the number of
surface nodes) whereas the second step generates a ”big” (rank equal to the number of surface nodes),
though very sparse, matrix. This strategy allows for a noticeable reduction in the computational cost for
displacing a mesh.

3.1 Step 1: Predictor
The predictor is based on data reduction according to which the source nodes set is coarsened by clus-
tering. The objective is to generate a reduced set of sources that are representative of the displacement
field of the surface mesh. For this purpose, an adaptive octree data structure that recursively splits the
Cartesian space is employed. By considering the surface mesh nodal density and the spatial gradient of
the displacements, more sources are generated in areas of rapid variation in the imposed surface nodes
displacements. In detail, the algorithm starts from a single parent box containing all surface mesh nodes.
Each parent box is recursively split based on the number of contained surface nodes (to ensure proper
resolution in densely populated zones) and the maximum difference in the displacements of the contained
surface nodes (to ensure proper resolution where the displacement field rapidly changes). Empty boxes
are ignored and parent boxes, the division of which would yield only one child box, are subdivided ir-
respective of the above criteria until a maximum depth limit is reached. The centers of leaf (childless)
octree boxes are used as RBF interpolation sources in the predictor training phase. Each source takes
on the averaged displacement of the surface mesh nodes contained in the corresponding leaf box of the
octree. Figure 1 illustrates an example of selected interpolation sources on the CFD surface mesh of a
duct.

The approximation to the displacement introduced by the predictor is measured by the nodal error
which is defined at each (ith) surface mesh node xi, as:

Ei =

√
∆xT

i ∆xi , (6)

where, in the predictor step, ∆xi = δi − dπ,Predictor(xi) is the difference between the known displacement
δi of the ith surface mesh node and that computed within the predictor step, dπ,Predictor(xi). In contrast to
greedy methods that usually minimize the surface error norm (summing up all surface nodal errors), in
the proposed method, any deviation from the known boundary displacements is resolved in the corrector

4



Figure 1: Double elbow duct. RBF sources (spheres) generated by the data reduction algorithm in
the predictor step for the duct studied in Section 5. Colors from blue to red represent small to large
displacements δ. The reference and displaced duct shapes are depicted in gray and blue, respectively
(see also Figure 9). Most RBF sources lie in the area of high spatial gradient of the displacements. The
computed sources do not necessarily lie on the mesh surface.

step. The role of the predictor step is to generate a reduced set of source points and approximate the
displacement field.

A global support RBF kernel is chosen, by considering characteristics such as mesh quality preser-
vation [4], flop count and condition number of the linear system to be solved. In the predictor step, the
inverse multi-quadric kernel [33]

φ(r) =
1√

( r
σ

)2 + 1
(7)

is employed, where σ is the parameter regulating the decay of the kernel, selected to be equal to half of
the mesh bounding box diagonal length.

The linear systems (one per Cartesian direction) in equation 5 (including the polynomial term), as-
sembled with the reduced set of RBF sources, are solved by an iterative method. Since the coefficient
matrix in equation 5 is non-positive definite, the selected solver is based on the Bi-Conjugate-Gradient-
Stabilized (BiCGStab) algorithm, coupled with the Sparse Approximate Inverse (SPAI) preconditioner.
As illustrated in Section 4.1, the SPAI preconditioner is non-symmetric. The iterative method solves
systems with multiple r.h.s. arrays (the displacements along the three Cartesian directions) at once using
parallel matrix-matrix multiplications. After solving equation 5, the displacement field is obtained by
evaluating equation 2 at all mesh nodes. The FMM, Section 4.2, is used to speed up this evaluation.

3.2 Step 2: Corrector
The corrector step is based on a local RBF interpolation method. The kernel used in this step is the
Wendland C0 function [34]:

φ(r) =


(
1 − r

rs

)2
if r < rs

0 if r ≥ rs
. (8)

A tradeoff among the smooth propagation of the deformations in the volume mesh, computational cost
and memory requirements, depending on the choice of the support radius, is expected. In the corrector,
the interpolation sources coincide with the surface mesh nodes with prescribed displacements. Since
the predictor has already displaced the surface mesh nodes close to their known target positions, the
remaining surface displacements ∆xi are minor. As a rule of the thumb, the support radius should be at
least three times larger than the largest error Ei of all surface nodes.
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The linear system in equation 5 (without the polynomial term, this time) is solved by taking into
account the new nodal positions computed by the predictor and imposing the displacements on the surface
nodes to be equal to the already computed differences ∆xi. The system is sparse and positive definite for
this activation function, equation 8; however, since the non-symmetric SPAI preconditioner is employed,
the BiCGStab algorithm is used. Then, the displacement field is obtained by evaluating equation 1. The
method presented in Section 4.3 is used to speed up this evaluation.

4 Acceleration Methods for the Two-Step Strategy
Methods to efficiently carry out the training and interpolation phases, in both the predictor and corrector
steps, are proposed. These methods are:

• The Sparse Approximate Inverse preconditioner [35] for the acceleration of the training phase in
both steps.

• The Fast Multipole Method [36] for the acceleration of the interpolation phase in the predictor step.

• An integer lattice-based technique for the acceleration of the interpolation phase in the corrector
step.

4.1 The SPAI Preconditioner
Preconditioning is essential to quickly solve the linear system in equation 5, during the training phase
in both steps. Recently, preconditioning techniques based on the SPAI have been developed [37]. Their
main advantage is that they are inherently parallel since many independent small linear systems must be
solved. SPAI preconditioners work properly for a wide range of applications [38] and are immune to
numerical difficulties such as pivot breakdowns as well as instabilities which might occur in incomplete
LU (ILU) [39].

In the literature, SPAI preconditioners are applied to sparse linear systems, although a few applica-
tions with dense systems can also be found. For instance, [40] compared diagonal, symmetric successive
overrelaxation, ILU and SPAI preconditioners coupled with a Generalized Minimal Residual (GMRES)
solver and found that the SPAI preconditioner gives better convergence rates, for a dense matrix arising
from the discretization of an electromagnetic scattering problem.

The SPAI preconditioner M is a sparse approximate inverse of a sparse approximation toΦ (equation
4). The method assumes that a sparse matrix can effectively approximate the inverse of a full (predictor)
or sparse (corrector step) matrix. Recall that the inverse of a sparse and, certainly, a dense matrix is
generally dense. Nevertheless, for a decaying RBF kernel, many of the entries in Φ are small, and many
of the entries in Φ−1 are also expected to be small [41]. All these small entries are neglected, so that
sparse (or sparser, if Φ is already sparse) approximations to Φ and Φ−1 are employed.

The computation of the preconditioner M is based on the minimization of the Frobenius norm:

min
M
‖SM − I‖2F , (9)

where I is the identity matrix, and S is a sparse matrix approximatingΦ; S is formed by the largest entries
in Φ. In equation 9, the Frobenius norm ‖.‖F is employed since it allows decomposing the minimization
problem into K (rank ofΦ) independent linear problems. In fact, a property of the Frobenius norm allows
splitting it into a sum of Euclidean norms [42]:

‖SM − I‖2F =

K∑
k=1

‖Smk − ek‖
2
2 , (10)

where mk is the kth column of M, and ek is the kth row of I. Each summand in equation 10 constitutes a
linear system to be solved, the rank of which is reduced based on the sparsity of S and M. For this reason,
S and M are subject to sparsity constraints to balance the quality of the preconditioner (the preconditioned
system should converge rapidly) and its construction and application time. A complete overview of the
theory of the SPAI preconditioner is provided in [35].

The criteria for selecting the sparsity (non-zero) pattern of M are discussed below. The strategy is
to maintain low the number of non-zero entries in M while capturing the largest entries in Φ−1 that are
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Figure 2: Graphical representation of the definition of the sub-matrix Φ(Ik,Ik) to solve the linear
system of each (kth) summand of equation 10. The integer lattice determines the set of indices Ik (see
example in Figure 3). Top: full matrixΦ and sparse kth column mk of the preconditioner M. Bottom: the
reduced matrix Φ(Ik,Ik) that is solved to find mk(Ik).

Figure 3: Regular Cartesian 2D integer lattice built over a cloud of sources. Square- and diamond-
sources are the third-level lattice neighbors of the diamond-sources. Round marks are considered as
far-away sources and, therefore, excluded from the neighbors of the diamond-sources. The integer lattice
is used to define a priori the sparsity pattern of the SPAI preconditioner, i.e. sets of indices Ik. The two
diamond sources yield the same set of indices Ik. In 3D, the lattice is formed by regular Cartesian cubes.
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Figure 4: Double elbow duct (top) and turbine stator (bottom). Patterns of two RBF training matrix
Φ (left) and their inverse Φ−1 (right) of the predictor, respectively. Top: Φ originated from the reduced
set of sources of the duct case of Figure 1. Bottom: Φ originated from the reduced set of sources of
the reference shape of the turbine stator case of Figure 11. All matrices are symmetric, and their rank is
∼104. Large to small entries are depicted in blue to white. The range (0, 1] of the entries ofΦ corresponds
to the image of the kernel in equation 7. Top: in Φ−1, only entries close the diagonal (but not just the
diagonal itself) are predominant, since the largest entries inΦ are close to the diagonal. Bottom: inΦ−1,
predominant entries are placed also far form the diagonal and those also match the predominant entries
of the inverse.

the most significant regarding the quality of the preconditioner. Reliable results can be obtained using
a precomputed sparsity pattern [43]. Thus, strategies that try to dynamically identify a suitable sparsity
structure for M are not used. They have general applicability but are time-consuming, and the procedure
to identify the preconditioner sparsity structure cannot easily be parallelized [35, 39, 44].

By first assuming that identical sparsity patterns for M and S are given, it is possible to define a set
of indices pinpointing the non-zero entries in each column of the preconditioner mk, as follows:

Ik = {∀ j ∈ [1,K] s.t. mk( j) , 0} . (11)

Then, Ik identifies the columns of Φ to be kept in the linear system of the kth summand of equation 10.
Ik also identifies the rows ofΦ that are kept, in order to reduce the number of rows of each linear system
in such summands. The retained non-zero entries in each column of the preconditioner mk are computed
by solving the following K linear systems:

Φ(Ik,Ik)mi(Ik) = ei(Ik). (12)

in which the coefficient matrices are square, symmetric and positive definite. Figure 2 illustrates graphi-
cally how the sub-matrix Φ(Ik,Ik) is formed by a known set of indices Ik (as in the example of Figure
3) to compute the entries of the kth column of the preconditioner. With a sparser matrix M, smaller
sub-matricesΦ(Ik,Ik) are derived so that Cholesky factorization can efficiently solve the linear systems
of equation 12, to compute mk. In this regard, if the indices of the rows of Φ forming the sub-matrices
in equation 12 were not the same with the indices of the columns, QR decompositions would be needed
being about four times more costly than Cholesky.

Using the same sparsity pattern for S and M is justified by the fact that the position of the large
entries in Φ−1, which contribute the most to the quality of the preconditioner, tend to be at the position
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of the large entries in Φ. This is theoretically supported by the work presented in [41]: for a banded
positive definite matrix, the entries in its inverse decay exponentially away from the bands. This behavior
is illustrated for two RBF coefficient matrices in Figure 4.

The description of the strategy used to define a priori the sparsity pattern of S and M, namely the
sets of indices Ik, 1 ≤ k ≤ K, previously assumed to be given, follows. The sparsity pattern is the
sets of indices Ik identifying the entries with the highest value in each row of Φ. In fact, for each RBF
interpolation source, the largest entries in Φ arise from the other sources in the neighborhood, due to
the behavior of the RBF kernel. The sets Ik are, then, formed by the indices of the rows generated by
the neighbor sources, including the kth source itself. To facilitate the neighbors’ searching procedure, a
regular Cartesian integer lattice tessellating the space is constructed. The neighbors of each RBF source
are defined through the lattice neighbors. Several levels of lattice neighbors can be defined. First-level
neighbors are all nodes in the box containing the source itself. Second-level ones are nodes contained in
the neighboring boxes of the first-level box in addition to the first-level itself and so forth. In Figure 3,
a 2D explicative lattice is illustrated with three levels of neighbors. The distance between lattice points
and the number of levels that define the neighbor’s nodes are used to adjust the sparsity pattern of S and
M.

Using the integer lattice to compute a priori the sparsity pattern has a beneficial effect. In fact, all
nodes in a lattice box have the same set of neighbor nodes Ik. The same set of neighbor nodes Ik leads
to the same reduced matrix Φ(Ik,Ik), which is factorized only once to build all the columns of the
preconditioner corresponding to the nodes contained in the lattice box having the Ik set of neighbors;
this reduces significantly the number of Cholesky decompositions needed.

Figure 5 illustrates the time required for the linear solver to converge, in the training phase of the
predictor step of the duct case (Section 5.1), including the setup time for various preconditioners. The
SPAI preconditioner reduces the time needed to converge to a reasonably accurate solution by one order
of magnitude. This saving in time becomes higher for bigger matrices. The influence of the neighbor
grouping strategy based on the integer lattice is also illustrated: for the preconditioner with density 5%,
the grouping strategy reduces the number of decompositions needed from ∼104 to just ∼7 × 102, reducing
the set-up time by a factor of approximately 15. As previously mentioned, the SPAI preconditioner is
non-symmetric and a solver for non-symmetric matrices (BiCGStab) must be used. SinceΦ is a symmet-
ric positive definite matrix, a symmetric positive definite preconditioner was also investigated to employ
faster iterative solvers. One of them was Conjugate Gradient (CG), used in the corrector step and not in
the predictor, due to the polynomial terms which make the coefficient matrix non-positive definite. The
Factorized SPAI (FSPAI) preconditioner [35] (positive definite) would exhibit much better performances
compared to the SPAI preconditioner if the strategy to reduce the number of sub-matrices decompositions
was not included. Since a sub-matrix must be factorized for each column of the preconditioner (factor-
izations cannot be re-used to build multiple columns), the setup time of the FSPAI becomes predominant
compared to the time for solving the system, similarly to the ”SPAI column by column” in Figure 5.
On the other hand, methods for the symmetrization of SPAI can be used in conjunction with solvers for
symmetric non-positive definite matrices. For instance, [45] suggested a symmetrization strategy in con-
junction with the Symmetric Quasi-Minimal Residual (SQMR) method, finding better convergence rates
that non-symmetric SPAI used in combination with GMRES.

4.2 The Fast Multipole Method
The Fast Multipole Method (FMM) is used to speed up the interpolation phase of the predictor step. Its
role is to accelerate the computation of summations involved in equation 1; polynomial terms, which ap-
pear in equation 2, are considered separately. The FMM was initially developed in [46] to approximately
solve N-body gravitational and electrostatic potential simulations, within any user-defined precision, with
runtime complexity O(N) instead of O(N2) of the direct computation. The same algorithm has been ap-
plied to RBF interpolations to compute interactions of RBF kernels [47], thus reducing the computational
complexity of the RBF interpolation. Since the FMM is described in detail in the literature (i.e. [48]), its
theory or any discussion on parallelization issues are omitted.

The FMM computes the displacement of each target node considering the real contribution of the
nearby source mesh nodes and low-rank approximations for the remaining far-away contributions. There-
fore, the FMM tool comprises of:

• An octree data structure, used to spatially organize the RBF sources and targets as well as to
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Figure 5: Double elbow duct. History of the residual of the full linear system (rank ∼104) assembled
from the reduced set of RBF sources (Figure 1) without polynomial terms for various combinations
of iterative solvers and SPAI preconditioners plotted as a function of normalized time. For the sake
of fairness, the setup time for the preconditioners, which appears as a delay before the solvers take
over, is also considered. Percentages in the legend refer to the density (which is equal to 1 minus the
sparsity of the matrix) of the preconditioners. The non-preconditioned Conjugate Gradient (CG) solver
does not have any setup time but the convergence rate is severely affected by ill-conditioning. Two
different SPAI preconditioners were used with different densities, to demonstrate that a correlation exists
between density and quality but, of course, a denser preconditioner costs more. The preconditioner named
”Column by Column” is built without the neighbors grouping strategy based on the integer lattice: the
preconditioners built with the grouping strategy have similar performance and much lower setup time.

differentiate near and far nodes at various levels. The octree data structure adopted in this work
is able to deal with highly unbalanced node distributions which are typical in CFD meshes. It is
inspired by [48] and implemented as a recursive domain decomposition with parallel divide-and-
conquer techniques.

• A low-rank approximation to compute the far-field contributions. In this work, the black-box FMM
(bbFMM) [36] is adopted; according to this, the low-rank approximation is based on polynomial
interpolation on Chebyshev nodes implemented to compute displacements along the three Carte-
sian directions simultaneously.

There is a trade-off between computational complexity and approximation error and whether this
approach becomes advantageous depends not only on the mesh size but, also, on the minimum nodal dis-
tance which determines the maximum allowed error due to the approximations made by FMM. In fact,
the risk is to introduce a significant error in the interpolated displacements that could damage mesh qual-
ity. Table 1 presents the error introduced in the RBF interpolation by the FMM for two different bbFMM
interpolation orders (accuracies). Figure 6 illustrates the time required to perform RBF interpolations for
various mesh sizes with and without the FMM. The FMM-based RBF interpolation is more affordable for
large meshes even if the parallel implementation is more involved since it requires many synchronization
points [49], compared to that of the direct computation. In fact, the direct computation is not affected by
parallel slowdown effects, because of the absence of synchronization overheads (the summation for each
target node, equation 1, can be carried out independently).

The matrix-matrix products required by the BiCGStab iterative solver applied to equation 5 were
replaced by the FMM (the FMM approximates the ΦW product, whereas PA and PT W are considered
separately) to take advantage of the lowered multiplication complexity. However, issues regarding the
accuracy and convergence of the BiCGStab solver arose: nearly exact matrix-matrix products were re-
quired for the solver not to converge to a wrong solution, [47]. The approach proposed in [50], based on
nested GMRES solvers employing FMM-based matrix-matrix multiplication approximations with dif-
ferent accuracies, was investigated to remedy the issues of the BiCGStab solver using the FMM-based
matrix-matrix multiplication. In this nested scheme, the inner solver was used as a preconditioner for
the outer solver. The inner solver was using FMM-based matrix-matrix multiplications with reduced
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Table 1: RBF interpolation errors and time using the bbFMM for two source and target distributions
(distr.) and two FMM interpolation orders. The number of sources is 1.25 × 105 and that of targets
2.2 × 106. The ”uniform” distribution of sources and targets is randomly generated in a unit cube
whereas in the ”CFD” distribution sources and targets correspond to the surface and volume nodes,
respectively, of the CFD mesh within the turbine stator case (Section 5.4). Error∞ and Error2 are the
maximum and average relative errors, respectively. Time appears as the fraction of the time needed to
perform the interpolation using the bbFMM over the time needed for the standard RBF interpolation
(evaluation of equation 1). Non-uniform distributions (i.e. CFD meshes) require unbalanced octrees to
keep the error predictable. However, unbalanced octrees have more levels and complex interaction lists
resulting in an increased overall runtime.

3rd Order 7th Order
Kernel Distr. Error∞ Error2 Time Error∞ Error2 Time

1
√

r2+1
Uniform 3.77 × 10−3 2.53 × 10−6 6.28 × 10−3 5.14 × 10−8 1.22 × 10−11 6.13 × 10−2

CFD 4.37 × 10−3 1.53 × 10−5 2.71 × 10−2 1.54 × 10−7 1.54 × 10−10 1.35 × 10−1

Figure 6: Wall-clock time for the evaluation of equation 1 by varying the number of sources and target
nodes (retaining the ratio 1:10) for a uniform distribution randomly generated in a unit cube using the
bbFMM method for the RBF kernel of equation 7. The FMM-based interpolations include the FMM
setup time. Three interpolation orders, 3, 5 and 7, are illustrated for the bbFMM, introducing a maximum
approximation error (relative infinity norm) smaller than 1 × 10−3, 1 × 10−5 and 1 × 10−7, respectively.

accuracy (low cost) whereas the outer solver was using accurate ones (at higher cost). The inner solver
was preconditioned by SPAI. Even if this approach worked well, the cost has increased, concluding that
such an approach seems attractive only for huge dense linear systems which is not the case in either step
of the proposed method.

4.3 Integer Lattice-Based RBF Interpolation
The FMM is not used in the corrector since the piecewise definition of the locally supported RBF kernel
makes the low-rank approximation by the bbFMM unreliable. Instead, a faster method is proposed for
exact interpolation of RBF networks with small local support radii. A neighbors’ search procedure based
on an integer lattice is used to accelerate the interpolation phase of the corrector step by avoiding the
computation of zero-valued summands in equation 1. The integer lattice used in this section is similar to
the one explained in Section 4.1 (see also Figure 3) but contains both sources and targets and is scaled
so that the distance between lattice points be equal to the local support radius rs of the RBF network.
Then, the contributions from the sources on the first level lattice neighbors are the only ones that must
be evaluated to compute the displacement of the target nodes in each lattice box. In fact, due to the
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Table 2: Double elbow duct. Quality metrics for the reference and displaced meshes, using standard
RBF and the proposed two-step strategy. Lower aspect ratios are favorable regarding CFD solution
accuracy.

Reference Standard RBF Two-Step Strategy
Max. aspect ratio 6574 6810 6597
Avg. aspect ratio 4.12 4.02 4.02
Min. cell volume 2.87 × 10−11 8.99 × 10−12 1.45 × 10−11
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Figure 7: Wall-clock time and RAM requirements for the double elbow duct (left) and turbine stator
(right) mesh displacements, for different mesh sizes. Cost is broken down into five main steps in the bar
chart: data reduction, predictor training and interpolation (Section 3.1) as well as corrector training and
interpolation (Section 3.2). The bar chart and computational time refer to the left vertical axis whereas
the peak memory curve points to the right one.

local support of the RBF kernel, only sources within a radius rs from a target node contribute to its
displacement.

This strategy reduces the interpolation cost by about two orders of magnitude for the duct and turbine
stator cases presented in Section 5. Moreover, this procedure is readily amenable to parallelization since
the computed displacements are independent of each other. Additionally, the same neighbors’ search
procedure is used to reduce the coefficient matrix filling time in equation 5.

5 Parametric Studies and Results

Table 3: Double elbow duct. Maximum and average surface error norm Ei for the reference and
displaced CFD surface mesh illustrated in Figures 1 and 9. The first column lists the values of the error
function prior to mesh displacement. The column labeled “Predictor Step” gives the same norms upon
completion of this step. The corrector merely drops both error norms to zero.

Reference Predictor Step
Max. Ei 2.01 × 10−1 1.77 × 10−3

Avg. Ei 5.76 × 10−2 7.68 × 10−5

Below, four validation tests, on three 3D CFD meshes, are reported. In Section 5.1, a comparison of
mesh displacement performed with the standard RBF model and the proposed method is presented for a
double elbow duct. The same double elbow duct and a turbine stator are used in Section 5.2 to assess the
software performance and scalability with respect to mesh sizes. In Section 5.3, the performance of the
software while varying the predictor step size is investigated for the displacement of a polyhedral mesh,
with up to 22-face polyhedral cells. Finally, in Section 5.4, the effect of increasing deformations on the
mesh quality of the turbine stator CFD mesh is investigated in the frame of an evolutionary algorithm-
based optimization. In all cases, mesh quality assessment is based on commonly used metrics. The goal
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is to minimize the degradation of mesh quality after the displacement. Performance is measured on a
computational node with two 6-core Intel(R) Xeon(R) CPU E5-2620 v2 @ 2.10 GHz processors.

5.1 Two-Step Strategy vs. Standard RBF Interpolation
The quality of the mesh within a double elbow duct, deformed using the programmed software, is com-
pared with the outcome of standard RBF. The displacement is representative of a shape variation that
could occur in evolutionary-based shape optimizations. The mesh, having ∼2.5 × 106 nodes, is suitable
for viscous flow simulations and is comprised of tetrahedra, pyramids, prisms and hexahedra. Reference
and final shapes are illustrated in Figure 9. Table 2 presents quality metrics for the reference and dis-
placed meshes which indicate the ability of the proposed method to achieve results of better quality, for
the considered case and metrics, with respect to standard RBF interpolation. This is justified by the fact
that, with the two-step strategy, the deformation is interpolated sequentially which has a beneficial effect
on the mesh quality preservation [23]. In fact, the maximum cell aspect ratio has increased just by 0.3%
using the two-step strategy, against the 3.6% increase by the standard model; the average aspect ratio has
increased by 2.4% using either method.

Table 3 and Figure 9 illustrate the nodal error norms of the reference and displaced surface mesh at
each step of the two-step procedure. In the first step, the RBF interpolation is carried out using ∼104

nodes, Figure 1, as a consequence of the data reduction algorithm. The first step significantly reduces
the nodal error norms but the resulting surface mesh does not perfectly fit the new geometry. The second
step uses all the ∼6 × 104 surface mesh nodes to perform the RBF interpolation that corrects all boundary
nodal displacements. In the second step, the sparsity of the linear system that needs to be solved to
perform the RBF interpolation is ∼99.8%.

5.2 Scalability Studies on the Mesh Size
Figure 7 illustrates the results of the investigation of the time and memory requirements for performing
the displacement of increasingly larger turbine stator and double elbow duct CFD meshes. The turbine
stator mesh is displaced from the reference to the second deformed shape of Figure 11, whereas the
shape modification of the double elbow duct is that of Figure 9. The time required to morph the meshes
is similar in both cases for similar mesh sizes. In both cases, the predictor interpolation and the corrector
training are the most expensive phases. The former scales linearly with the mesh size, thanks to the
FMM. The latter scales super-linearly due to the increased matrix size. The predictor training time
is almost constant since the imposed surface mesh displacements are similar for all mesh sizes. The
corrector interpolation phase also scales super-linearly with the mesh size due to the increased number
of RBF kernel evaluations, but its contribution to the total computational cost remains minimal, thanks
to the integer lattice-based strategy.

5.3 Parametric Study on the Predictor Matrix Size
The DrivAer car geometry is a test case developed by the Technical University of Munich [51] that is
herein used in the fastback configuration with mirrors, wheels and a smooth under-body. The mesh with
∼4.2 × 106 nodes, ∼3.58 × 105 of which are surface mesh nodes, consists of various types of elements,
with up to 22-face polyhedra. The reference mesh is displaced to the deformed one, as a result of a shape
optimization for minimizing drag [52] (not included in the paper). Mesh quality metrics are listed in
Table 4. The results exhibit small differences in the maximum aspect ratio which increases by 10% with
almost the same maximum skewness. Moreover, no degenerated elements are observed.

Figure 8 reports an investigation of the time required to displace a mesh as a function of the predictor
training matrix size. Additionally, the same figure shows the time spent in the predictor against the overall
time required to displace the mesh. The results display that in this case an optimal size for the coarsening
exists. More importantly, the trend of the overall time required, around the optimal predictor training
matrix size, is nearly flat, and non-optimal predictor sizes yield an increase in computational cost below
50%, for this case. In fact, the lowest required time found is ∼11 min while the highest is ∼15 min. The
predictor training matrix size is controlled by the user-defined data reduction parameters.
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Figure 8: DrivAer car model. Wall-clock time for the mesh displacement, as illustrated in Figure 4, by
varying the coarsening in the predictor. Wall-clock time measurements are represented as circles whereas
the curve represents the wall-clock time trend. The time spent in the predictor step against the overall
mesh displacement time is also marked with colors from red to white.

Table 4: DrivAer car model. Quality metrics for the unstructured polyhedral mesh reported for the
reference and deformed designs illustrated in Figure 10.

Reference Deformed
Min. Jacobian >0 >0
Max aspect ratio 36.0 39.4
Max skewness 3.5 3.5

5.4 Aerodynamic CFD Optimization
In this section, the proposed mesh displacement strategy is incorporated into an evolutionary algorithm
(EA)-based shape optimization of the turbine stator, using the software EASY (Evolutionary Algorithm
System) [53] developed by the researchers’ group. The transonic flows, for the various designs, are
resolved with the in-house GPU enabled Reynolds-Averaged Navier-Stokes equations solver [54] em-
ploying the Spalart-Allmaras turbulence model.

The blade have a maximum chord length of 60 mm. Hub and shroud average radii are 221 mm
and 268 mm, respectively. Inlet and outlet conditions are provided in the form of radial profiles, corre-
sponding to a 565 K average inlet total temperature, a 190 kPa average inlet total pressure, 0.1◦ and 0.4◦

average inlet peripheral and radial flow angles respectively and a 114 kPa average outlet static pressure.
The blade shape is parameterized with NURBS surfaces, and 8 design variables are exposed to the op-
timization procedure. The surface mesh conforming to each new boundary is obtained by inverting and
displacing nodes in the NURBS parametric space, taking special care of trimmed surfaces, as described
in [55]. The volume mesh is deformed using the two-step method of this paper with additional treatments
for the matching periodic boundaries. The mesh is block-structured with viscous layers and ∼2.2 × 106

nodes, ∼1.2 × 105 out of which are surface nodes.
The optimization aimed at minimizing the mass-averaged total pressure losses and maximizing row

capacity. The total pressure losses between the inlet S I and outlet S O are expressed in the form of the
non-dimensional quantity

∆Pt =
pt |S I − pt |S O

(pt − p)|S I

, (13)

where p is the pressure, pt the total pressure, and operators . |S I and . |S O represent mass-flow-averaging
at inlet and outlet, respectively. Capacity is defined as

C = ṁ

√
TT

pT

∣∣∣∣∣∣∣∣∣
S O

, (14)
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Figure 9: Double elbow duct. Detail of the reference (left) and displaced (middle) CFD unstructured
meshes. On the right, the two shapes are compared and the low-to-high nodal error norms of the CFD
mesh, after the 1st step of the two-step strategy, is illustrated on the displaced shape with colors ranging
from blue to red.

Figure 10: DrivAer car model. Reference (blue) and displaced (red) shape as a result of drag optimiza-
tion. The most important shape modifications are located at the front (left figure) and rear (right figure)
parts of the car model.

Figure 11: Turbine stator blade. From left to right: reference, 1st and 2nd deformed shapes selected from
the front of non-dominated solutions of the multi-objective optimization of the turbine stator (Section
5.4). Mesh quality metrics and optimization results are presented in Table 5.
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Table 5: Turbine stator blade. Quality metrics and objective function values for the block-structured
volume mesh of the turbine stator reported for the reference and two non-dominated designs illustrated
in Figure 11. The sign of the Jacobian is used to check the validity of the mesh. Larger orthogonality
metric values and lower normal skewness values are favorable regarding CFD solution accuracy. y+ < 1
of the first nodes off the wall is desirable to guarantee that the mesh near the wall is adequate for CFD
simulations with a low-Re turbulence model. In the 2nd deformed mesh, the max. y+ is higher than 1 only
for a small number of nodes, so the results are still considered reliable. Surface mesh quality metrics are
also reported since they represent bounds for the quality metrics of the volume mesh.

Reference 1st Def. 2nd Def.
Capacity [ms

√
K] 1.37 × 10−5 2.21 × 10−5 2.58 × 10−5

Total Pressure Losses 6.82 × 10−2 4.92 × 10−2 9.67 × 10−2

Min. Jacobian >0 >0 >0
Min. min. orthogonality 0.17 0.14 0.08
Avg. min. orthogonality 0.74 0.68 0.62
Max. max. normal skewness 0.84 0.86 0.93
Avg. max. normal skewness 0.27 0.32 0.39
Max. y+ 0.67 0.95 1.19
Min. surface orthogonality 0.17 0.12 0.07
Max. max. surface normal skewness 0.84 0.89 0.93

where ṁ is the mass flow and Tt the total temperature. A geometric constraint to keep the axial chord of
the stator blade constant is also imposed. The row is composed of 34 blades.

Figure 11 illustrates the shapes for the reference and three improved designs. To evaluate the quality
of the obtained deformed meshes, adapted to the improved shapes, various quality metrics for structured
meshes were computed as presented in Table 5 along with the results of the optimization. The results
indicated the absence of degenerated elements (minimum Jacobian > 0) even for large deformations. A
negative impact on the worse quality metrics (min. min. orthogonality and max. max. normal skewness)
resulted, although this is due to just a few elements since averaged quality metrics (avg. min. orthogonal-
ity and avg. max. normal skewness) are preserved. Moreover, it should be taken into account that when
a volume mesh is deformed, the quality of surface deformations represents a bound for the volume mesh
quality. For this reason, in Table 5, the quality metrics for the surface mesh are also tabulated, exhibiting
the same trend as the volume mesh quality metrics.

6 Conclusions
This paper places itself among a series of recent efforts to develop faster algorithms for mesh displace-
ment based on RBF. It combines a two-step strategy with an effective preconditioner based on SPAI to
accelerate the training phases in both steps. The FMM and an integer lattice are used to speed up the
predictor and corrector interpolation phases, respectively.

The predictor reduces the problem size by solving an interpolation problem on a reduced dataset gen-
erated by a fast spatial decomposition method based on octree. This results in a geometric approximation
of the boundaries which is corrected by the local deformation in the second step. For instance, in the
double elbow duct case, the standard RBF requires the solution of a linear system approximately of rank
105 whereas, with the proposed method, the training phase is subdivided into the solution of a dense
linear system approximately of rank 104 and a sparse linear system approximately of rank 105, although
with just 0.5% of non-zero entries. The SPAI preconditioner reduces the number of iterations needed by
the iterative solver by more than one order of magnitude. The computation of the SPAI preconditioner is
easily performed in parallel and a strategy, based on geometric considerations, to compute the non-zero
structure and reduce the number of dense decompositions needed for its computation, by a factor 15 for
the duct case, was proposed.

The performance of the FMM-based interpolation is assessed against standard RBF interpolation,
resulting to order of magnitudes saving in computational cost for large CFD meshes. For example, by
using the FMM for an RBF model with 1.25 × 105 source and 2 × 106 target nodes, the time needed to
compute the displacements of the internal nodes is reduced by 10 times yielding 10−7 maximum relative
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error or 100 times for 10−3. Using the integer lattice to avoid the computation of the zero-valued RBF
kernels is beneficial for both the training and interpolation phase of the corrector step. For instance, for
the duct case, it was possible to cut the time needed to assemble the training matrix and perform the RBF
interpolation by a factor 100.

The resulting mesh displacement tool operates regardless of the mesh type: it is fast compared to the
typical time needed to perform the CFD simulations and preserves mesh quality as well as viscous layers
even for large deformations.

The duct and turbine stator cases were used to indicate the scalability of the software for increasing
mesh sizes. For example, for a turbine stator, the time needed to displace a grid with ∼2.2 × 106 nodes
is less than 2 min while the same displacements applied to a grid with ∼2.2 × 107 nodes requires ∼12
min. The performance of the software was also examined by varying the coarsening of the predictor step.
Results indicate that the performance differs by varying the predictor size. However, for the DrivAer
car case, the time required to displace the mesh is nearly constant for a wide range of predictor training
matrix sizes, and non-optimal parameters yield an increase in computational time of at most 50%. Multi-
objective evolutionary optimization of the turbine stator was performed to indicate the robustness of the
software over large displacements. Optimal solutions were found that reduce the total pressure losses
up to 27% and increase the capacity up to 88% without the need to generate new meshes even for large
shape modifications.
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