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Abstract

Multi-objective optimization has been rising in popularity, especially within an industrial environment,
where several cost functions often need to be considered during the design phase. Traditional gradient-free
approaches, such as evolutionary algorithms, can be employed to compute a front of equally suitable
solutions a designer can choose from, with a high computational cost though, particularly in high-
dimensional design spaces. In this paper, a gradient-based algorithm is developed for efficiently tracing the
Pareto front in bi-objective aerodynamic shape optimization problems, where an adjoint method is used for
the computation of the objective functions’ gradients with respect to (w.r.t.) the design variables. After
obtaining a starting point on the front, a prediction-correction approach is employed to compute new Pareto
points. Satisfying the Karush-Kuhn-Tucker (KKT) conditions provides a prediction for the next point,
which is, then, corrected by solving a minimum distance problem. The prediction step, though, requires
the costly computation of the Hessian matrix. This is avoided here by using the BFGS [1] technique. The
proposed method is first demonstrated in a less expensive lift/drag optimization of an isolated airfoil and,
then, applied to the bi-objective optimization of a 3D compressor stator. The extension of the proposed
method to cases with more than two objectives is straightforward, on condition that an algorithm is found
to coordinate the way the Pareto front is swept.

I. Introduction

Optimization in aerodynamics and engineering, in general, may involve several contradictory
objectives. These multi-objective optimization (MOO) problems can be solved using stochastic
approaches, such as Evolutionary Algorithms (EAs), which are able to capture the front of non-
dominated solutions with a single run. EAs treat the objective function evaluation tool as a "black
box" and, thus, no additional software development is required. Provided that they are run for a
sufficiently long time, EAs are able to find the global optima, by computing convex, non-convex
and discontinuous Pareto fronts [2, 3]. However, the main disadvantage associated with EAs is
that their computational cost scales with the number of design variables [4]. As a remedy to this
problem, metamodel-assisted EAs (i.e. EAs regularly implementing low-cost surrogate evaluation
models within the evolution) and/or dimensionality reduction techniques using, for instance,
Principal Component Analysis [5] can be applied.
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On the other hand, gradient-based approaches deal with MOO problems by performing a
series of single-objective optimization (SOO) runs. The most popular gradient-based strategy is the
weighted-sum approach, in which a convex combination of the individual objectives is minimized.
Differently weighting the objectives leads to different non-dominated solutions and, thus, the
process is repeated until the Pareto front is adequately populated. However, a uniform spread of
weights rarely results in a good distribution of points along the Pareto front. If the Pareto front is
non-convex, none of the combinations of weights may compute internal front points.

In order to approximate the Pareto front with a number of well-distributed optimal points,
several approaches have been proposed. The Normal Boundary Intersection (NBI) method, where
the Pareto front is sought by projecting points lying on the convex hull of local minima of each
individual objective, is presented in [6]. A uniformly-spaced grid of points on the convex hull
results in a good distribution of Pareto optimal solutions. Although this method is applicable to
high objective space dimensions, it is not guaranteed that the whole Pareto front is found whereas
special treatment is required at the non-convex parts of the front.

These issues of the NBI can be addressed by the adaptive weighted-sum method [7], where,
instead of prescribing a-priori weights to populate the Pareto front, weights are dynamically
modified. A small number of SOO problems are initially solved for given combinations of
weights and, then, the unexplored Pareto regions are populated by specifying additional inequality
constraints. The extra computational cost as well as the dependency on some user-defined
parameters are the main weaknesses of this method. In addition, extension to problems with more
than two objectives is not straightforward. An improvement to the NBI method for high objective
space dimensions is proposed in [8], successively populating the inner parts of bounded Pareto
fronts. For such cases, the boundary of the Pareto front can be computed using objective reduction
techniques [9].

A different scalarization technique using steepest descent is described in [10], where convex
and non-convex well-distributed Pareto fronts are generated. This is also achieved in [11] by
augmenting the KKT conditions with additional objective-space-based distance constraints and,
then, using Newton’s method to solve the coupled system of equations, which drive the set
of points towards Pareto optimality and uniform spacing simultaneously. The required (exact)
Hessian matrix is derived by a hyper-dual numbers implementation, at very high cost, though, for
practical applications.

Target or reference point methods have been used in optimal flow control [12] as a robust way
of moving from one Pareto point to another. They require the successive solution of many SOO
problems, which is computationally intensive and, as a remedy to this, reduced-order approaches
based on Proper Orthogonal Decomposition have been proposed [13].

An alternative to scalarization techniques are the curve continuation strategies which aim
at moving from one Pareto point to a neighbouring one by taking into account the local front
curvature. Such an approach is introduced in [14] in the form of a prediction-correction scheme.
A constrained minimization problem is defined, where equality constraints are imposed to all but
one objective function which is to be minimized. Formulating the KKT conditions and satisfying
the requirements of the implicit function theorem, a linear system is derived, the solution of
which can be used to predict a new Pareto point. Due to the non-linearity of the problem, an
iterative correction step is required to bring the point onto the Pareto front. The corrector can be
any constrained optimization solver, such as sequential quadratic programming (SQP). Although
this approach has the advantage of controlling the distance between two Pareto points, this
depends on the user-defined value of the constraints, a bad choice of which can lead to the SQP
problem being unsolvable. Moreover, the need for the Hessian matrix can be a limiting factor
regarding performance. In [15], a number of alternatives to computing the Hessian for such a curve
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continuation approach are presented. These include Hessian approximations using BFGS and
the computation of Hessian-vector products, instead of the Hessian itself, based on the truncated
Newton method [16].

In this work, a different gradient-based prediction-correction algorithm is developed for
efficiently moving on the Pareto front. The prediction phase is inspired by the corresponding step
used in [14], while key differences exist in the correction phase. Instead of solving a constrained
SOO problem at each correction step, an unconstrained formulation is proposed, where the
Pareto front is traced by minimizing the distance (in the objective space) from properly defined
target points. The distance function is treated as the objective in the formulation of the KKT
stationarity condition, computing the minimum distance solution. The required gradients are
obtained using either discrete or continuous adjoint; in the results, Sect. III, the first case is handled
using continuous [17] whereas the second one uses the discrete [18] adjoint. BFGS is selected
as the optimization method in the correction step, providing thus a Hessian approximation to
be utilized in the subsequent prediction step. After demonstrating the proposed method on an
isolated airfoil, its industrial applicability is indicated using a 3D turbomachinery component
which is presented in detail.

II. Method Formulation

A MOO problem is defined as

min
b∈B

F(b) :=
[

f1(b) . . . fM(b)
]T (1)

s.t. c(b) = 0

g(b) ≥ 0

where F : RN → RM, c : RN → RM1 , g : RN → RM2 are the objective and constraint functions,
B := {b ∈ RN | c(b) = 0, g(b) ≥ 0} denotes the feasible solutions’ set, N is the number of design
variables and M > 1 the number of objectives. Since a single b∗ ∈ B cannot minimize all objective
functions fi at the same time, the optimality definition is expanded in the Pareto sense. For b1,
b2 ∈ B, F(b1) is said to dominate F(b2) if:

∀ i ∈ {1, . . . , M} : fi(b1) ≤ fi(b2) and ∃ j ∈ {1, . . . , M} : f j(b1) < f j(b2) (2)

A solution b∗ is called Pareto optimal if it is non-dominated [6]. Then, the Pareto set Ps and
Pareto front Pf are defined as Ps = {b∗ ∈ B | b∗ is Pareto optimal} and Pf = F(Ps), respectively.

As discussed in Sect. I, various methods exist to solve problem (1). In this work, a target
point approach is enhanced using a prediction technique. After obtaining an initial point on the
Pareto front (upon completion of the so-called "Go-to-Pareto" step), an infeasible target point is
automatically computed in the objective space and the Euclidean distance of the objective vector to
that target vector is minimized, resulting in a new Pareto point. This process is repeated until the
Pareto front is adequately populated. Moving between neighbouring Pareto points is accelerated
using a prediction-correction technique, in which the prediction is driven by approximate Hessian
information.
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i. The "Go-to-Pareto" Step

To initialize the method, a first point b∗0 that belongs to the Pareto front must be found. This is
achieved by minimizing a weighted-sum of the M objectives

min
b∈B

Fw(b) := w · F(b) =
M

∑
j=1

wj f j(b) (3)

subject to the constraints of problem (1), where wj ≥ 0 ∀ j ∈ {1, . . . , M}. Populating the Pareto
front by performing a series of "Go-to-Pareto" steps (3), using different weight (w) combinations,
is computationally expensive and non-applicable to non-convex problems, thus, an alternative
approach is proposed herein.

ii. The "Move-on-Pareto" Steps

Moving along the Pareto front can be achieved by means of appropriately selected target points.
This technique can be found in the literature with a wide variety of slightly different formulations
[12, 19]. At each step, a target point T i =

[
f̂1 . . . f̂k . . . f̂M

]T ∈ RM which does not belong to the
feasible solutions’ set has to be defined in the objective space. Here, this is done by shifting
an already computed Pareto point F(b∗i−1) towards a direction that reduces one objective while
retaining the values of the other objectives, i.e. by defining the target point as

T i :=
[

f1(b∗i−1) . . . fk(b
∗
i−1) + ∆ f̂k . . . fM(b∗i−1)

]T (4)

where ∆ f̂k < 0. In what follows, points marked with (∗) belong to the sought Pareto front. T i is
an infeasible point, since it would otherwise dominate F(b∗i−1) according to the Pareto optimality
condition (2). Then, a new (ith) Pareto point is obtained by solving the distance minimization
problem (with non-dimensional values for the objective components f j):

min
b∈B

1
2
‖F(b)− T i‖2

2 :=
1
2

M

∑
j=1

(
f j(b)− f̂ j

)2 (5)

subject to the constraints of problem (1). Thus, the solution to problem (5) is geometrically defined
as the projection of T i onto the Pareto front. By updating the target position based on Pareto
points already found, additional points on the Pareto front can be computed one after the other.
In general, this "Move-on-Pareto" technique is not restricted to low objective space dimensions,
and it amounts to finding an algorithm for redefining the targets in such a way that the Pareto
front is adequately populated.

The simplicity and robustness of the proposed approach are the key ingredients which support
its implementation within an industrial workflow. However, the method’s efficiency cannot be
neglected, since solving problem (5) multiple times is cost intensive. In this paper, this is tackled
by adding a prediction step (for the next Pareto point), which provides a good initial guess and
accelerates the convergence significantly.

The prediction step is inspired by the Pareto curve continuation method presented in [14]. The
main difference lies in the fact that the implicit function theorem is applied to problem (5) instead
of (3). Further consideration of constraints is omitted, since only unconstrained optimization
problems are addressed in this work. However, there is no gap in the method, since the generic
formulation (including constraints) can be derived following [14] and solved using, for instance,
the SQP method [15].
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Let b∗i be the solution to problem (5) for the target point T i as defined in Eq. (4). This should
satisfy the KKT conditions:

∇b

(1
2
‖F(b)− T i‖2

2

)
= 0 ⇔

M

∑
j=1

(
f j(b)− f̂ j

)
∇b f j(b)︸ ︷︷ ︸

G(b, f̂k)

= 0 (6)

In order for a point to remain on the Pareto front, the total derivative of G(b, f̂k) w.r.t. the
target (i.e. f̂k) should be zero:

δG(b, f̂k)

δ f̂k
= 0 ⇔ ∂G(b, f̂k)

∂ f̂k
+

∂G(b, f̂k)

∂b
δb
δ f̂k

= 0

or [ M

∑
j=1

(
∇b f j

(
∇b f j

)T
+
(

f j − f̂ j
)
∇2

b f j

)] δb
δ f̂k

= ∇b fk (7)

After solving the linear system of Eq. (7) for δb
δ f̂k

at the current point b∗i , a prediction bpred
i+1 of

the next point b∗i+1 on the Pareto front is given by a first-order Taylor expansion

bpred
i+1 = b∗i +

δb
δ f̂k

∣∣∣∣
i
∆ f̂k

It should be noted that, in Eq. (7), the Hessian matrices ∇2
b f j are required and, thus, they

should be computed or approximated.
The new point b∗i+1 is obtained by solving the distance minimization problem (5) from an

updated target point T i+1 while using bpred
i+1 as an initial guess. This step can be considered as the

correction to the previous prediction. Mathematically speaking, a T i+1 consistent with the above
prediction is obtained by displacing T i using the perturbation vector [0 . . . ∆ f̂k . . . 0]T . However, for
small values of ∆ f̂k, displacing any point that lies along the line defined by T i and F(b∗i ) towards
that direction gives a different target point, which, when used in problem (5), should result in a
similar Pareto solution. In practice, this was verified during the preliminary testing of the method
and, thus, defining every new target point T i+1 w.r.t. the previously computed Pareto point F(b∗i ),
as in Eq. (4), was found to be the best option, especially when combined with a constant ∆ f̂k.

In [12], an alternative way of defining target points is proposed using a tangent approximation,
to deal with Pareto fronts of highly varying steepness.

iii. Bi-objective Optimization Algorithm

In this work, the proposed method is applied only to problems with two objectives (M = 2), as
illustrated in Fig. 1, using Algorithm 1. A BFGS-based method was developed in order to solve
the SOO problems (3) (i.e. to obtain an initial Pareto point) and (5), and at the same time provide
an approximation to the Hessian matrices needed in Eq. (7). The BFGS implementation includes a
line search algorithm which aims at accelerating the optimization by satisfying at each step the
Armijo condition [1]. This condition assures that the chosen step length sufficiently decreases the
function to be minimized. Thus, finding an appropriate step length comes at a cost of up to two
additional function evaluations, while reducing the required number of the (more expensive) BFGS
steps. The gradients needed to drive the optimization method are obtained by adjoint solvers.
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f2

f1

F(b∗0)

T1

∆ f̂2 F(b∗1)

min ‖F(b)− T1‖2

(a)

f2

f1

T i

F(b∗i )

T i+1

F(bpred
i+1 )

F(b∗i+1)

(b)

Figure 1: Proposed method in the bi-objective space: (a) Computation of Pareto point b∗1 by solving the distance
minimization problem (5) starting from b∗0 (without prediction); (b) Definition of new target point T i+1 and
acceleration of the method using a prediction step after solving the linear system of Eq. (7)

Algorithm 1 (for bi-objective problems)

Read: Reference point b0, weights [w1 w2] = [1 0], number of steps ns (along the Pareto front),
step length ∆ f̂2 < 0

1: Solve optimization problem (3) → b∗0 (initial Pareto point: f1(b∗0) = f min
1 )

2: Define the 1st target point (4): T1 = F(b∗0) + [0 ∆ f̂2]
T

3: Starting from b∗0 , solve optimization problem (5) → b∗1 (using BFGS)
4: Store ∇b f1,∇b f2 (computed by adjoint) and ∇2

b f1,∇2
b f2 (approximated by BFGS) at b∗1

5: i = 1
6: while (i < ns and ‖F(b∗i )− F(b∗i−1)‖2 > ε) do

7: Solve linear system (7) → δb
δ f̂2

∣∣∣
i

8: Define new target point T i+1 = F(b∗i ) + [0 ∆ f̂2]
T

9: bpred
i+1 = b∗i +

δb
δ f̂2

∣∣∣
i
∆ f̂2 (prediction step)

10: Starting from bpred
i+1 , solve (5) → b∗i+1 (correction)

11: Store ∇b f1,∇b f2 and ∇2
b f1,∇2

b f2 at b∗i+1
12: i = i + 1
13: end

In order to quantify the method’s efficiency improvement due to the addition of prediction
steps, in Sect. III, the first "Move-on-Pareto" step is always performed using exclusively the
iterative correction step, while omitting the prediction step used in any subsequent Pareto point
search, as shown in Fig. 1(a). A comparison is made between the cost of computing b∗1 and the
rest of the Pareto points.

The second condition in line 6 of Algorithm 1 is employed to ensure that, in case the chosen
number of steps ns is too big, the algorithm will terminate when the distance between two
subsequent Pareto points becomes smaller than ε. Herein, ε = 0.1

∣∣∆ f̂2
∣∣ is selected.
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III. Applications

i. Shape Optimization of an Isolated Airfoil

Before moving on to the 3D turbomachinery application, the proposed method is demonstrated in
the lift/drag optimization of the isolated NACA0012 airfoil. The initial geometry along with the
applied parameterization using two Bezier curves [20] are plotted in Fig. 2.

The symmetric baseline shape is parameterized with 14 Control Points (CPs), 6 out of which
remain fixed and the rest are allowed to move in the y direction, resulting in 8 "free" design
variables. In the absence of any other constraint (such as a volume constraint), reasonable
bounds are selected for these parameters in order to avoid non-realistic airfoil shapes during
the optimization. Then, an unstructured C-type mesh consisting of ∼ 75k hybrid elements is
generated. At each design iteration, the mesh is updated to match the varying airfoil geometry
using an RBF mesh morpher [21].

-0.15

-0.1

-0.05

0

0.05

0.1

0.15

0 0.2 0.4 0.6 0.8 1

y/
c

x/c

Bezier Curve
Control Polygon

Fixed CPs
Free CPs

Figure 2: Parameterization of baseline airfoil geometry using Bezier curves. The "fixed" CPs are not displaced during
the optimization, whereas the "free" ones can move vertically (one design variable per "free" CP)

Regarding the flow conditions, the freestream flow angle, Mach and Reynolds numbers are:
α∞ = 3◦, M∞ = 0.15 and Re∞ = 3× 106, respectively. Flow simulations are performed using a
CFD code for unstructured grids [22], running on graphics processing units (GPUs). The steady-
state Reynolds-averaged Navier-Stokes (RANS) equations for compressible flow are solved using a
vertex-centered finite-volume discretization scheme; turbulence is resolved with the one-equation
Spalart-Allmaras (SA) model [23]. Lift and drag gradients w.r.t. the design variables are computed
using the continuous adjoint method [17].

The MOO problem is defined as

min

{
f1(b) = −cL(b)

f2(b) = cD(b)

where cL and cD the lift and drag coefficients of the airfoil. Applying Algorithm 1 with ns = 10
and ∆ f̂2 = −0.1, the results plotted in Fig. 3 are obtained. Here, the aim is not to generate the
whole Pareto front (not both corner points were sought), but rather to verify the applicability of
the adjoint-based approach. Additionally, in order to perform the MOO within an acceptable
computational cost, the convergence criteria of the SOO problems solved in the correction steps
are reasonably relaxed. The cost is measured in terms of the equivalent flow solutions (EFS;
one EFS stands for the cost of solving the flow equations using the CFD solver of the case)
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required for the primal and adjoint simulations, so the "Go-to-Pareto" step involved 30 EFS, the
first "Move-on-Pareto" step (without prediction) needed 18 EFS and each subsequent step (using
prediction-correction) required on average ∼ 12 EFS, resulting in a total computational cost of 159
EFS for obtaining 11 Pareto points. The cost breakdown demonstrates the benefit of the proposed
method in terms of efficiency.

In order to verify the results, a metamodel-assisted EA-based (MAEA) optimization software
(EASY [24], developed by the NTUA) was employed to generate the Pareto front. As shown in
Fig. 3, the adjoint-based solution set is in good agreement with the MAEA one (only part of which
is shown here), both of which are sufficiently approximating the front. More Pareto points are
computed by the MAEA optimization at a slightly higher total cost (175 EFS) though. Due to the
relaxed termination criteria, the set of non-dominated solutions obtained by the adjoint method
is an approximation to the (exact) Pareto front; this is however computed faster than the MAEA
front, even for a rather small value of design variables (N = 8).

1

1.1

1.2

1.3

1.4

1.5

1.6

1.3 1.4 1.5 1.6 1.7 1.8 1.9 2 2.1

D
/D
0

L/L0

MAEA
Prediction
Correction

Target

Figure 3: Solution of the lift/drag problem for an isolated airfoil: Pareto front approximation by 11 optimal points
obtained using the proposed method and comparison with MAEA results. The dashed line stands for the
"Go-to-Pareto" step

ii. Shape Optimization of a Compressor Stator

Herein, the proposed method is applied to the bi-objective optimization of a 3D compressor stator.

ii.1 Description and CFD setup

This subsection presents the case setup with focus on the steps that have to be considered in order
to perform the CFD simulation. A similar setup has been previously used in [25].

The initial stator geometry is available online [26]. The goal is to optimize this baseline stator
(BS) w.r.t. two criteria, which leads to a MOO problem. The first objective to be minimized is the
total pressure losses between the inlet and exit, defined by the loss coefficient:

ω =
pt,I − pt,E

pt,I − pI
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where p and pt denote the mass-averaged static and total pressure computed at the inlet (I) and
exit (E) of the CFD domain. The second objective to be minimized is the flow angle deviation
from the axial direction at the stator exit:

αE =

√√√√√√√√
∫
AE

ṁα2 dAE∫
AE

ṁ dAE

, α = cos−1

(
u√

u2 + v2 + w2

)

where u, v, w denote the Cartesian velocity components and ṁ the mass flow rate. Only the
design point operating conditions are considered, with a uniform inlet whirl angle profile of 42◦.
These two objectives are contradicting since the higher the turning – which is required here to
achieve a more axial outflow – the higher the losses. Moreover, several geometric constraints
(such as minimum leading edge (LE) and trailing edge (TE) radii, constant axial chord length,
etc.) are taken into account during the optimization process. Their detailed definition, as well as
information about the boundary conditions of the case, can be found in [26].

T
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T (x)

β (x)

β
I

T
I

T
E

β
E

p c x

(b)

p~ x~

T (x)
~ ~

β (x)
~ ~

0
0

1

1

(c)

(a)

β (x)

C (x)T
maxT (x)

β
E

β
I

T
E r

E

T
I

r
I

p c
x

Figure 4: Parameterization of blade section: (a) Profile Skele-
ton; (b) Camber-line angle and thickness distributions;
(c) Non-dimensional distributions

The BS geometry is parameterized
using the Rolls-Royce in-house blade
design tool [27] and is constructed by
21 individual 2D profile sections radi-
ally stacked from hub to tip. A curve in
the radial direction is defined by axial
and circumferential shifts, and the sec-
tions are stacked accordingly, resulting
in the final 3D blade shape [28]. For
each profile contour definition, a sec-
tion build-up based on the superposi-
tion of a camber-line angle β(x) and a
thickness distribution T(x) is applied
[29]. In the present work, the normal-
ized distributions plotted in Fig. 4 are
parameterized by B-splines [20], using
7 CPs for the non-dimensional camber-
line angle distribution and 9 CPs for the
normalized thickness distribution, but
they are kept constant during the MOO.
From the 21 available 2D profiles, 7 are
selected as design sections and the rest are obtained by spline interpolation. Thus, the 5 design
parameters (rI , rE, β I , βE and Tmax) per design section and 2 stacking parameters for each
section’s axial and circumferential shift, excluding hub and tip, sum to 45 design variables in total.
Using such a CAD-based parameterization, the geometric constraints of the case can a-priori be
guaranteed by properly bounding the design space.

Figure 5 shows the block-structured hexahedral mesh with ∼ 2 million nodes that was
generated using an in-house meshing tool [30], after conducting a mesh refinement study to
achieve a mesh-independent computation of the objectives. The maximum y+ value of the first
series of nodes off the walls is below 4, which is in conformity with the adaptive wall function
technique [31] used in the CFD simulation.

A steady-state RANS compressible flow solver with the SA turbulence model is used to
compute the flow. This is part of the Rolls-Royce in-house CFD suite of codes [32], which have
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Figure 5: CFD mesh of the BS mid-span section

been extensively validated and applied to several industrial applications [33]. The non-linear flow
solver uses a vertex-centered finite-volume discretization scheme and the 5-stage Runge-Kutta
method [34] (for the pseudo-time-stepping) is accelerated by a block-Jacobi preconditioner and a
geometric multigrid technique [35]. Figure 6(a) illustrates the close-to-surface streamlines after the
flow simulation for the BS geometry has converged. It can be seen that corner flow separations
occur at both hub and tip which, then, expand along the suction side of the blade. This is common
for highly loaded compressor stators and it was also experimentally observed in [36], where this BS
geometry was manufactured and measured. These separations contribute to a loss of ω0 = 0.0764,
while the flow turning achieved by the BS blade is such that αE,0 = 3.74◦. In [36], the presented
CFD setup was experimentally verified as an accurate simulation tool for this compressor stator
application.

The HYDRA discrete adjoint solver [18] is used to provide the volume sensitivities (i.e. the
change in objective function w.r.t. a volume mesh node perturbation). Surface sensitivities (i.e. the
change in objective function w.r.t. a surface mesh node perturbation) are computed by applying
the inverse operation of a spring-based mesh deformation algorithm to the volume sensitivities
[38]. Then, the surface sensitivity map is obtained by projecting each surface node’s sensitivity
vector onto its corresponding boundary normal. This is visualized for the BS in Fig. 6(b) where
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Figure 6: CFD results on the suction side of the BS blade: (a) Surface streamlines of converged flow; (b) Adjoint
sensitivity map of ω w.r.t. surface normal displacements
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ω is used as the objective. The sensitivity map shows which areas should be modified in order
to suppress the corner flow separations and, thus, reduce the losses. Here, blue areas should be
pulled outwards and red pushed inwards to achieve a decrease in ω. The black line depicts the
zero sensitivity line.

Coupling the mesh sensitivities dω
dXS

, dαE
dXS

with the geometric sensitivities dXS
db (using the chain

rule) results in the adjoint gradients dω
db , dαE

db , where b denotes the blade design parameters. The
accuracy of these gradients was verified as in the previous study [37]. The required computation of
geometric sensitivities

( dXS
db

)
for each design parameter is done using second-order FD. Although

the computational cost of FD for the geometry part scales with the number of design parameters,
the total cost for the 45 parameters used in this case is negligible compared to the cost of the
primal and adjoint solutions.

ii.2 Computing the initial Pareto point

The first Pareto point required to initialize the MOO process is computed as described in step
1 of Algorithm 1. Hence, an initial optimal stator (OPS0) blade is sought, which is obtained by
minimizing exclusively w.r.t. the first objective ω. In order to perform this SOO for the "Go-to-
Pareto" step, an automated workflow was developed within the Rolls-Royce design process for this
compressor stator application. This SOO workflow is also employed during the correction steps of
the "Move-on-Pareto" process (following subsection), using a different minimization function.

The BFGS optimization method has come up with a leaned (bow-shaped) blade; Fig. 8-(b),
which is more loaded at mid-span and less loaded at hub and tip, thus reducing the (still existing)
corner flow separations. This is also illustrated in Fig. 9, where the total pressure loss coefficient
distribution at an axial cross-section just behind the TE is plotted for the BS (a) and OPS0 (b)
blades. Especially the tip corner separation is almost fully suppressed. Thickness minimization
(up to the bound value), LE/TE optimization (increased radii values for hub/tip – leading to
formation of fillets – minimum values for rest of the sections) and increased exit blade angles βE
(less flow turning) result in ω∗0 = 0.0731 for OPS0.

On the other hand, the exit flow angle deviation from the axial direction rises to α∗E,0 = 6.7◦,
which is mainly driven by its circumferential/whirl component αw. The whirl angle distribution
at the exit plane of the CFD domain is plotted in Fig. 10 for the BS (a) and OPS0 (b) blades, and is
primarily affected by the modifications in βE.

ii.3 Pareto tracing

Once the first Pareto point has been computed, the proposed methodology following Algorithm 1
is employed, while requesting for 10 steps (ns = 10) each of which attempts to reduce αE by 0.5◦

(∆α̂E = −0.5◦).
Figure 7 shows the 11 Pareto optimal points which were obtained in the non-dimensional

objective space. These non-dominated solutions are in general well distributed along the Pareto
front, apart from the final point b∗10 which is further away from the previous point b∗9 due to
the "flattening" of the front. An intermediate point could be found (if that were of interest) by
decreasing the step size ∆α̂E. The predicted points are close to the optimal solutions and, thus, are
omitted from the plot (similar to the target points) for the sake of clarity. The point represented as
a red triangle was obtained (at a preliminary stage) by performing an additional "Go-to-Pareto"
optimization with [w1 w2] = [0 1], and seems to be in line with the shape of the computed Pareto
front.
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approximated by 11 well-distributed optimal points obtained using the proposed methodology. The red filled
triangle stands for an additional Pareto point, which resulted from a "Go-to-Pareto" optimization with
[w1 w2] = [0 1]

In terms of computational cost, the "Move-on-Pareto" process required in total 159 EFS for
the primal and adjoint simulations (including line search steps). This consists of 21 EFS for
the first step (without prediction) plus ∼ 15 EFS on average for each subsequent step (using
prediction-correction), which is considered to be efficient when compared to the 36 EFS needed
for the "Go-to-Pareto" step. A summary of this cost comparison between the components of the
method is tabulated in Table 1, where the benefit of incorporating a prediction step is shown.

All the Pareto points in Fig. 7 share minimum values for the design parameters rI , rE and
Tmax of all blade sections excluding hub and tip. The continuous geometry modifications when
moving from point to point are attributed to variations in the blade angles β I , βE (controlling the
loading of the blade), as well as to the 3D stacking of the sections (axial and circumferential shift
parameters).

Table 1: Summary of computational cost to compute 11 Pareto points

Total Cost per BFGS steps
cost [EFS] point [EFS] per point

Go-to-Pareto 36 36 8

Move-on-Pareto
(first step)

21 21 5

Move-on-Pareto
(steps 2–10)

138 15.3 3.1
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This is illustrated in Fig. 8, where the geometries corresponding to the Pareto points b∗4 (c), b∗8
(d) and b∗10 (e) are compared to the BS (a) blade. The progressively formed wavy TE is mainly
responsible for reducing the exit flow angle to a minimum of α∗E,10 = 1.98◦, as shown in Fig. 10,
where the distribution of the whirl angle component at the exit plane of the CFD domain is plotted
for the OPS4 (c), OPS8 (d) and OPS10 (e) blades. The OPS10 blade achieves an average whirl angle
closer to zero.

Finally, the total pressure loss coefficient distribution at an axial cross-section just behind the
TE is plotted in Fig. 9 for all the discussed blades. The one corresponding to OPS10 (e) is slightly
worse than the BS one (a) and results in ω∗10 = 0.077.

Performing the presented MOO is clearly beneficial to the design process, since it simplifies
the task of the design engineer, who can select one of the computed non-dominated solutions (e.g.
the OPS8 which dominates the BS w.r.t. both objectives: ω∗8 = 0.0746, α∗E,8 = 2.73◦) according to
his/her preference.

IV. Conclusions

In this paper, a new adjoint-based method for the solution of bi-objective optimization problems
was developed. The method relies on an iterative prediction-correction approach for efficiently
tracing the Pareto front. The main difference from other curve continuation techniques exists in
the formulation of the KKT conditions, where a distance function is treated as the objective. A
BFGS optimization method was implemented in order to approximate the Hessian information
required at each prediction step of the algorithm.

The proposed method was first demonstrated in the lift/drag optimization of an isolated
airfoil, and then successfully applied to the bi-objective optimization of a 3D compressor stator.
It was found that the BFGS Hessian approximations can further be utilized to accelerate the
"Move-on-Pareto" technique. Here, the introduction of the prediction step seems to increase
method’s efficiency by a factor of ∼ 1.4 (average value for examined cases). As a result, the
presented Pareto fronts were obtained in an automatic manner with low computational cost and
well-distributed solutions. The extension of the method to multidimensional MOO problems is
straightforward, provided that an algorithm to set the targets (for sweeping the Pareto front) is
found.
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